

Supplementary Data 1. Lymphocytes isolated from $Cre^+Pten^{fx/fx}/Myc^{fx/fx}$ LPDs mice failed to engraft to hematopoietic tissues in recipient mice, whereas lymphoblasts from $Cre^+Pten^{fx/fx}/Myc^{fx/4}$ mice with lymphoma generated a leukemia-like disease with lymphoblast infiltration into multiple tissues. Lymphocytes and lymphoblasts were isolated from the enlarged lymph nodes of $Cre^+Pten^{fx/fx}/Myc^{fx/fx}$ mice with LPDs and $Cre^+Pten^{fx/fx}Myc^{fx/+}$ mice with lymphoma. Cells were transplanted into lethally- irradiated recipient mice separately. Ten million $Cre^+Pten^{fx/fx}/Myc^{fx/fx}$ LPD lymphocytes (CD45.2⁺) or one million $Cre^+Pten^{fx/fx}/Myc^{fx/+}$ lymphoblasts (CD45.2⁺) were transplanted into each recipient mouse together with 2×10^5 WT supporting BM cells (CD45.1⁺). Eight mice were transplanted in each group. Mice receiving $Cre^+Pten^{fx/fx}/Myc^{fx/fx}$ LPD lymphocytes survived for more than 6 months. No donor- derived cells (CD45.2⁺) could be detected in BM (A) and spleens (B) of recipient mice 6 months after transplantation, as shown by flow cytometric analysis of CD45.2⁺ cells. However, all mice receiving $Cre^+Pten^{fx/fx}/Myc^{fx/f}$ lymphoblasts died within 20 days after transplantation with a leukemia-like disease as shown by multiple tissue infiltration of CD4⁺CD8⁺ lymphoblasts (C-F). C and D are representative flow data from BM (C) and spleen (D) of one such recipient mouse. F. A representative liver section shows lymphoblast infiltration of the liver tissue.

Supplementary Data 2. A & B. Three weeks after birth, $Mx1Cre^+Pten^{fx/fx}Myc^{fx/fx}$, $Mx1Cre^+Pten^{fx/fx}Myc^{fx/fx}$, $Mx1Cre^+Pten^{fx/fx}Myc^{fx/fx}$, and WT littermate control mice were injected with 200ug. polyI:C every other day for a total of 5 injections to induce gene deletions. All $Mx1Cre^+Pten^{fx/fx}Myc^{fx/fx}$ and $Mx1Cre^+Pten^{fx/fx}Myc^{fx/fx}$ mice developed lymphadenopathy 20 to 30 days after *Pten* and *Myc* gene deletions were induced. C. Heterozygous or homozygous *Myc* deletion in CD4⁺ and B220⁺ lymphocytes isolated from enlarged lymph nodes were confirmed by q-PCR assay. 1, 2 and 3 represent CD4⁺ or B220⁺ cells isolated from WT lymph nodes, $Mx1Cre^+Pten^{fx/fx}Myc^{fx/+}$ lymphadenopathy and $Mx1Cre^+Pten^{fx/fx}Myc^{fx/fx}$ lymphadenopathic, mice, respectively

Supplementary Data 3: General hematopoietic information for $Pten^{-/-}Myc^{-/-}$ mice. A. Reduction in the percentage of CD41⁺ megakaryocytes in BM but increased percentage of these same cells in spleens of $Pten^{-/-}Myc^{-/-}$ mice compared to $Pten^{+/-}Myc^{-/-}$ mice. B. Slight increase in the percentage of Gr1⁺Mac1⁺ granulocytes in spleens of $Pten^{-/-}Myc^{-/-}$ mice compared to those of $Pten^{+/-}Myc^{-/-}$ mice. C. Significant reduction in B220⁺ B lymphocytes in BM and spleens of $Pten^{-/-}Myc^{-/-}$ and $Pten^{+/-}Myc^{-/-}$ mice. However the percentage of CD3⁺ T-lymphocytes is significantly increased in BM but remains the same in spleens of $Pten^{-/-}Myc^{-/-}$ and $Pten^{+/-}Myc^{-/-}$ mice compared to WT control mice. The percentages of these two types of cells are comparable between $Pten^{-/-}Myc^{-/-}$ and $Pten^{+/-}Myc^{-/-}$ mice. ** indicates statistical significance compared to WT mice. \$ indicates statistical significance compared to WT mice. $Pten^{-/-}Myc^{-/-}$ mice. ** indicates statistical significance compared to WT mice. \$ indicates statistical significance compared to $Pten^{-/-}Myc^{+/-}$ mice.

Supplementary data 4. Granulocyte infiltration into livers of $Pten^{-/-}Myc^{+/-}$ mice, as shown by Gr1 antibody staining. Bars in the figures equal 100 μ m.

Pten ^{+/-} /	Myc ^{-/-}	Pte.	n ^{-/-} M 1 4n pidiur	r <u>yc-/-</u> n Iod	ide
%	Sub-G1	2n	4n	8n	16n
$Pten^{+/-}Myc^{-/-}$	21.3	42.1	26.2	6.1	2.2
Pten ^{-/-} Mvc ^{-/-}	18.7	33.3	32.6	9.7	2.9

Supplementary Data 5. *Pten* deletion did not reverse the lower ploidy and increased apoptosis phenotype of $Myc^{-/-}$ megakaryocytes. PI staining and flow cytometric analysis of DNA content of CD41⁺ megakaryocytes from *Pten^{+/-} Myc^{-/-}* and *Pten^{-/-} Myc^{-/-}* mice. Upper panel is representative flow cytometric data for three pairs of mouse analyses. The sub-G1 population consists of cells undergoing apoptosis.

Supplementary Data 6. Increased fibrosis in the spleens of $Pten^{-/-}Myc^{-/-}$ **mice.** A & B. Spleen sections of WT, $Pten^{+/-}Myc^{-/-}$, $Pten^{-/-}Myc^{-/-}$ and $Pten^{+/-}Myc^{-/-}$ mice stained with H & E (A) and reticulin (B). Increased fibrosis in $Pten^{-/-}Myc^{-/-}$ mouse spleen is indicated by with arrows (B). Bars in the figures equal 100µm.

Supplementary Data 7. Increased megakaryocytic proliferation in *Pten^{-/-}Myc^{-/-}* mice.

Representative images of *in situ* BrdU staining of spleen sections from WT, $Pten^{-/-}Myc^{+/-}$, $Pten^{+/-}Myc^{-/-}$ and $Pten^{-/-}Myc^{-/-}mice$. Significantly increased BrdU⁺ cell percentage in spleens of $Pten^{-/-}Myc^{+/-}$ and $Pten^{-/-}Myc^{-/-}$ mice. The BrdU⁺ cells in $Pten^{+/-}Myc^{-/-}$ and $Pten^{-/-}Myc^{-/-}$ mice are relatively larger in size, suggesting that they are megakaryocytes.

Supplementary Data 8. Reduction of thymocyte numbers in thymus glands of *Pten^{+/-}Myc^{-/-}* **and** *Pten^{-/-}Myc^{-/-}* **mice. A.** Total mononucleated cell numbers (MNCs) in thymus glands of WT, *Pten^{-/-}Myc^{+/-}*, *Pten^{+/-}Myc^{-/-}* and *Pten^{-/-}Myc^{-/-}* mice. **B.** CD4 and CD8 staining and flow cytometric analysis of thymocytes in the thymuses of mutant mice.