SUPPORTING INFORMATION

 Construction of strains and plasmids. All oligonucleotide primer sequences, plasmids, and strains are given in Table S1. To create RK113, we deleted the endogeneous *ccm* operon in *E. coli* BW25113 by P1 transduction. Briefly, P1 phage were grown first in LB media containing 5 mM CaCl² and 0.2 % glucose (wt/vol) with the donor strain (RK103 (*1*)). Donor cells were 6 killed by addition of chloroform and phage were isolated. Dilutions of isolated phage (100 μ L) 7 were incubated with 100 μ L of the recipient strain (BW25113) in LB containing 5 mM CaCl₂ 8 and 100 mM MgSO₄ at 37^oC for 30 min. Physical interaction between the phage and cells was disrupted by addition of 66.7 mM sodium citrate (Fisher), pH 5.5, and the culture was added to 1 10 mL LB broth and incubated for one hour at 37°C while shaking at 300 rpm. Transductants were 11 selected by growth on $LB + Kan$, and cells were purified from P1 phage by repeated streaking on LB + Kan plates containing sodium citrate. Deletion of the *ccm* operon in RK113 was confirmed by genomic PCR. To create RK111, we used the pKNOCK system (*2*). Briefly, the *cyt c*4:His6 gene along with the *araC* gene were cloned from pRGK332 (*1*) into pKNOCK-Gm (*2*). The *araC* gene was included to serve as the site for homologous recombination with the chromosome. Cloning was done in *E. coli* S17-1/λ*pir*, and the plasmid was conjugally transferred to *E. coli* RK103 (*1*). Putative exconjugants were selected for resistance to 10 ug ml⁻¹ gentamicin, and correct integration of *cyt c*4:His was verified by genomic PCR. *E. coli* strains TB1 and HB101 were used as host strains for cloning. pRGK333 (*1*) containing the full system I operon (*ccmABCDEFGH*) was the template for all PCR amplifications unless otherwise indicated. A plasmid containing *ccmABCDE* (∆*ccmFGH*) was constructed by PCR amplification of *ccmABCDE* with Ccm_N-term and Del_CcmF_Left, the product of which was digested, and ligated into BamHI and EcoRI digested pGEX-4T-1 (GE

CcmF_NcoI_Fwd and CcmF_6xHis_PstI_Rev, digested, and ligated into NcoI and PstI digested

pRGK330 to make pRGK408, pRGK409, and pRGK410. His261Gly, Cys, Tyr, and Met were

generated by amplifying with the appropriate reverse mismatch primer and CcmF_NcoI_Fwd to

generate short PCR products. These products were gel purified and used in a second

amplification with CcmF_6xHis_PstI_Rev. His491Gly, Cys, Tyr and Arg were generated by

47 amplifying with the appropriate forward mismatch primer and CcmF 6xHis PstI Rev to generate short PCR products. These products were gel purified and used in a second amplification with CcmF_NcoI_Fwd. The final, full-length products for all site-directed mutants at His261 and His491 described above were digested with NcoI and PstI and inserted into pRGK330 to generate pRGK411-418. Each of the final constructs was sequenced to confirm the mutation.

 The *ccmF-3* gene from *Shewanella oneidensis* (SO_0478) was PCR amplified from genomic DNA, digested, and ligated into the NcoI and PstI sites in pRGK330 to generate pRGK420. The *ccmF* gene from *Roseobacter denitrificans* (RD1_3223) was amplified from genomic DNA, digested, and ligated into the EcoRI and KpnI sites of pRGK330 to make pRGK424. *Roseobacter denitrificans* genomic DNA was provided generously by the Blankenship lab. The *ccmF-2* gene from *E. coli* (b4074) was amplified from genomic DNA, digested, and ligated into the NcoI and XbaI sites of pRGK330 to make pRGK421. The *ccmF* genes from *Shewanella oneidensis* (SO-0266), *Desulfovibrio vulgaris* (DVU_1050), and *Thermus thermophilus* (TTHA1404) were each amplified from genomic DNA with the appropriate primers and cloned into pCR-Blunt II-TOPO (Invitrogen). From pCR-Blunt II- TOPO, the *ccmF* gene from *Shewanella oneidensis* was ligated into the NheI and XhoI sites of pRGK330 to make pRGK419, the *ccmF* gene from *Desulfovibrio vulgaris* was ligated into the NcoI and XbaI sites to make pRGK423, and the *ccmF* gene from *Thermus thermophilus* was ligated into the KpnI and NheI sites to make pRGK422. *Desulfovibrio vulgaris* subsp. *vulgaris* ATCC 29579 and *Thermus thermophilus* ATCC 27634 strains were obtained from ATCC and cultured according to ATCC recommendations, and genomic DNA was prepared using the Puregene System Cell and Tissue DNA Isolation Kit (Gentra Systems).

Table S1. Oligonucleotides, plasmids, and strains used in this study

ATCC 29579

This work

This work

 Figure S1. Peak fitting of the ferrous CcmF UV-visible absorbance spectrum. The fit peaks reveal speciation between 6cLS (red) and 5cHS (blue) hemes with a significant fraction being 5cHS. Assuming that the extinction coefficients at the HS and LS Soret maxima are roughly equal, the samples of ferrous CcmF(WT) used in this study comprise approximately 20 % 5cHS 74 heme. Based on similarities among the UV-visible spectra and insensitivity of the v_3 ratios to [DDM] between 0.48 % and 0.02 %, this speciation is essentially independent of DDM concentration.

- **Figure S2.** Representative heme stain showing cytochrome *c*4:His6 assembly (i.e., heme
- attachment) by the indicated CcmF proteins in the presence or absence of 10 mM imidazole.
- Arrow indicates 24 kDa holocytochrome *c*4:His6 matured by a functional system I. "pSysI∆F"
- denotes a system I deleted for *ccmF*; "c4:His only" denotes an absence of all *ccm* genes; "M"
- 81 denotes molecular weight standards (shown is the 28 kDa standard). 100 µg of BPER-isolated
- proteins was loaded into each lane for SDS-PAGE prior to heme staining.

 Figure S3. Representative heme stains showing cytochrome *c*4:His6 assembly of mutants at His261 (A) and His491 (B) in the presence or absence of 10 mM imidazole (as described in Figure S1). Arrow indicates 24 kDa holocytochrome *c*4:His6 matured by a functional system I. Substitutions: A, Ala; G, Gly; C, Cys; Y, Tyr; M, Met; R, Arg. The dash denotes the negative 87 control condition (absence of CcmF) and "wt" denotes wild-type CcmF. "M" denotes molecular 88 weight standards (shown is the 28 kDa standard). 100 µg of BPER-isolated proteins was loaded into each lane for SDS-PAGE prior to heme staining.

Figure S4. Coomassie stain (A) and corresponding heme stain (B) after SDS-PAGE of

CcmF:His6 from *E. coli* (*Ec*), *Thermus thermophilus* (*Tt*; Deinococcus group), *Desulfovibrio*

vulgaris (*Dv*), *Roseobacter denitrificans* (*Rd*), *Shewanella oneidensis* (*So*), *Shewanella*

oneidensis CcmF-3 (*So*-F3), and *E. coli* CcmF-2 (*Ec*-F2). Arrows indicate full-length 54 kDa

CcmF:His6 and free heme at the SDS-PAGE dye front. Note that some of the *So*-CcmF3 and

Ec-CcmF2 aggregate at approximately 117 kDa, possibly a dimeric form, under the conditions of

SDS-PAGE used. Additionally, note that for *Dv*, *So*-CcmF3 and *Ec*-F2, some heme is retained

in the full length protein and/or in the higher molecular weight forms. For each of the proteins

analyzed, heme was found to be non-covalent as determined by pyridine hemachromagen (data

not shown). Thus, *Dv*, *So*-CcmF3 and *Ec*-F2 may bind heme in a partially SDS-resistant,

 although non-covalent, manner. 30 µg of purified hexahistidine-tagged protein was analyzed for each.

 Figure S5. Redox titration of the CcmF *b*-heme with alternate redox dyes. Spectra collected during reduction of CcmF *b*-heme with resorufin (A) or safranin O (B). Arrows indicate the direction of changes in absorption during the course of the titration. The decreases in absorbance at 534 nm and 572 nm in (A) are due to reduction of resorufin. In (B), the decrease in absorbance at 412 nm and the increase in absorbance at 426 nm are indicative of reduction of the CcmF *b*-heme, and the decrease in absorbance at 532 nm is due to reduction of safranin O. Note 108 that the dye resorufin $(E_m = -50 \text{ mV})$ (4) is completely reduced before reduction of the CcmF *b*-109 heme, while the CcmF *b*-heme is completely reduced before reduction of safranin O (E_m = -280) mV) (*4*). This indicates that the relative midpoint potential of the CcmF *b*-heme is in between that of resorufin and safranin O. Conditions: 20 mM Tris-HCl, pH 7, 100 mM NaCl, 0.02 % DDM.

113 **Figure S6.** Redox titration of the CcmF *b*-heme in high DDM (1.2 %). Spectra collected during 114 a reductive titration of CcmF *b*-heme with nile blue chloride $(E_m = -116 \text{ mV})$ (4) (A) and the 115 corresponding linear Nernst plot (B). Arrows in (A) indicate the direction of changes in 116 absorption during the course of the titration. In (B), $[25 \text{ mV} \ln (b \text{-heme}_{red}/b \text{-heme}_{ox})]$ was used 117 for the one-electron reduction of heme and $[12.5 \text{ mV} \ln (\text{dye}_{\text{red}}/\text{dye}_{\text{ox}})]$ was used for the two-118 electron reduction of dye, where *b*-heme_{red}/*b*-heme_{ox} and dye_{red}/dye_{ox} represent ratios of the 119 molar concentrations of the reduced and oxidized forms of the *b*-heme and the dye, respectively. 120 The reduction potential in 1.2 % DDM was substantially more positive $(E_m = -110 \pm 4 \text{ mV})$ than 121 in 0.02 % DDM. Conditions: 20 mM Tris-HCl, pH 7, 100 mM NaCl, 1.2 % DDM.

SUPPORTING INFORMATION REFERENCES

- (1) Feissner, R. E., Richard-Fogal, C. L., Frawley, E. R., Loughman, J. A., Earley, K. W.,
- and Kranz, R. G. (2006) Recombinant cytochromes c biogenesis systems I and II and

analysis of haem delivery pathways in Escherichia coli. *Mol Microbiol 60*, 563-577.

- (2) Alexeyev, M. F. (1999) The pKNOCK series of broad-host-range mobilizable suicide
- vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. *Biotechniques 26*, 824-826.
- (3) Richard-Fogal, C. L., Frawley, E. R., Bonner, E. R., Zhu, H., San Francisco, B., and
- Kranz, R. G. (2009) A conserved haem redox and trafficking pathway for cofactor
- attachment. *Embo J 28*, 2349-2359.
- (4) Clark, W. M. (1960) *Oxidation-Reduction Potentials of Organic Systems*, Waverly Press, Baltimore, MD.