
Text S1 Statistical model of microarray loop design 

    Consider a two-color microarray experiment in which v samples (designated as 

“varieties” by some authors and called “target” in the context of hybridization) are 

compared using s slides. Each spot on a slide corresponds to a particular gene. We 

analyzed the data for each gene separately. With each spot on the slide in which 

samples k (labeled with Cy5) and  (labeled with Cy3) are mixed and hybridized, 

there are two associated quantities, R and G, which are the normalization-corrected 

intensities of red (Cy5) and green (Cy3) dyes, respectively. We assume that the 

intensities are proportional to the true expression levels, denoted by and for 

samples and k' , respectively, of the corresponding gene j. Since the data will be 

analyzed for each gene separately, for simplicity, we drop the suffix j in the following 

discussion and model R and G as follows: 
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where r and g are the proportional factors of red and green dyes, respectively. and 

are random error terms. The logarithmic ratio is 
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where the parameter  represents the relative labelling efficiency between 

dyes. Let 
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  , k = 1, 2, … , v,  represent the relative 

expression levels among v samples. It is easy to see that 
v
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there are only v-1 independent parameters and1 2 v-1λ ,λ , ,λ  2 v-+ +λv 1λ =- λ +λ 1

n





. 

For each gene, let denote the vector of the n normalization–corrected 

log-ratios obtained from all of the corresponding spots on slides in the experiment. In 

this experiment, n depends on gene and ranges between 16 to 64. The ordered set of 

the independent parameters is given by the parameter vector . 

Therefore, the data can be expressed as a linear model 
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Y=Xβ+ε
 

,  2ε~N(0,σ I)


where is the vector of independent errors, I is the n×n identity 

matrix, and is the n×v design matrix describing how the samples 

are paired onto slides. Each row of X corresponds to a spot. For instance, to a spot on 

the slide in which samples k (≠v, labelled with Cy5) and k’ (≠v, labelled with Cy3) 

are mixed and hybridized, the corresponding row is 
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x =(0, ,  0,  1 , 0, , 0, -1 , 0, , 0,  1)  
. 

To a spot on the slide in which sample k (≠v, labelled with Cy5/ Cy3) and sample v 

(labelled with Cy3/ Cy5) are mixed and hybridized, the corresponding row is of the 

following form: 
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x =(  1, , 1,  2 , 1, , 1,  1),  if sample k is labelled with Cy5,

x =( -1, , -1, -2 , -1, , -1,  1), if sample k is labelled with Cy3.









 

 

 

For the experiment shown in Figure 1B, the design matrix X is 

 

1 -1 0 0 0 0 0 0 0 0 0 1

0 1 -1 0 0 0 0 0 0 0 0 1

0 0 1 -1 0 0 0 0 0 0 0 1

0 0 0 1 -1 0 0 0 0 0 0 1

0 0 0 0 1 -1 0 0 0 0 0 1

-1 0 0 0 0 1 0 0 0 0 0 1

0 -1 0 0 1 0 0 0 0 0 0 1

0 0 1 0 0 -1 0 0 0 0 0 1

-1 0 0 0 0 0 1 0 0 0 0 1

0 -1 0 0 0 0 0 1 0 0 0 1

0 0 -1 0 0 0 0 0 1 0 0 1

0 0 0 -1 0 0 0 0 0 1 0 1

0 0 0 0 -1 0 0 0 0 0 1 1

-1 -1 -1 -1 -1 -2 -1 -1 -1 -1 -1 1

1 1 1 1 1 2 1 1 1 1 1 1

0 0 -1 0 0 0 0 0 1 0 0 1
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Here we assume a situation in which there is a single replicate for each gene on each 

slide. If the number of replicates for each gene is greater than one, the corresponding 

row should be repeated accordingly. 

The vector β  of unknown parameters can be estimated by the least square 

estimator ,  .The expression profiles presented in this study are 

, , , , , and . 
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Criterion to eliminate low variant genes (0.21): 

 To tease out gene having characteristic steady-state expression patterns, we 

filtered out all the genes with low variation avoiding the insignificant random noise. 

We used top 10 % variant genes as the candidates for further model fitting algorithm 

and the cutting value located at 0.21. (Text S1 Figure 1) 
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Genes for model fitting 

Text S1 Figure 1. The historgram of variation of each gene over 6 time periods. 

The cutting vale, 0.21 was set to filter out genes with low variation. 

 

Criterion of significantly correlated to fitting model (0.75): 

The null hypothesis of gene expression was set as . The distribution of 

correlation coefficient to the model (equation 2 in the main text) was shown as Text 

S1 Figure 2 (red line). 
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Text S1 Figure 2. The one-million-times simulation of the null hypothesis was 

shown as red line. Meanwhile, a PDF was shown in blue to describe the 

distribution of this simulation to gain the power of analytical results. 

 



A density function, was used to describe this distribution as shown 

in Text S1 Figure 2 (blue line).  

Consequently, p-value(p) was determined by equation , where c is the 

bation, 

cutting value(criterion). Regarding this work, the criterion we used to determine 

significantly correlated to fitting model, 0.75, corresponds to a p-value, 0.043. 

 The designate p-value was strongly case dependent. The strength of pertur

the susceptibility of the reacting biosystems (transcriptomics in this paper), and the 

noise level all affect the suitable p-value. With this model, one can easily determine 

the cutting value and its corresponding p-value. 

 
 


