The nucleotide sequence of histidine tRNA γ of Drosophila melanogaster

Martin Altwegg and Eric Kubli

Zoological Institute, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8006 Zürich, Switzerland

Received 1 July 1980

ABSTRACT

The nucleotide sequence of <u>D.melanogaster</u> histidine tRNA $_\gamma$ was determined to be: pG-G-C-C-G-U-G-A-U-C-G-U-C- ψ -A-G-D-G-G-D-D-A-G-G-G-A-C-C-C-C-A-C-G- ψ -U-G-U-G-U-G-M¹G-C-C-G-U-G-G-U-A-A-C-C-m⁵C-A-G-G-U- ψ -C-G-m¹A-A-U-C-C-U-G-G-U-C-A-C-G-G-m⁵C-A-C-C-A_{OH}. An additional unpaired G is found at the 5' end, and the T in the T ψ C loop is replaced by a U.

INTRODUCTION

<u>Drosophila melanogaster</u> $tRNA_{\gamma}^{His}$ belongs (together with $tRNA^{Asn}$, $tRNA^{Asp}$, and $tRNA^{Tyr}$) to a class of tRNAs decoding triplets of the type NA_c^U (N is G,A,U, or C). At least one of each of the isoacceptors of this class of tRNAs contains the hypermodified base queosine in the first position of the anticodon¹ which is inserted by the replacement of guanine in the intact $tRNA^{2,3}$. The degree of modification changes in parallel in all four tRNAs during development^{1,4,5}. This observation and the fact that the presence of the queosine base in the wobble position changes the affinity of the anticodon in anticodon-anticodon binding experiments⁶ renders this class of tRNAs especially interesting. We have therefore set out to determine by post-labeling techniques the sequence of $tRNA^{His}$ isolated from D.melanogaster.

MATERIALS AND METHODS

Most of the materials, enzymes and methods used for the purification and sequence analysis of tRNA $_{\gamma}^{\text{His}}$ have been described⁷⁻¹⁰. The 3' labeling was done according to Peattie¹¹.

RESULTS

<u>Purification of tRNA^{His}</u>: Two-dimensional polyacrylamide gel electrophoresis resolves crude tRNA in about 50 spots, one of which was shown to contain tRNA^{His,10°}. The RNA contained in this spot was eluted, further purified on RPC-5 and identified by aminoacylation.

<u>Sequence analysis:</u> The sequence at both ends of the tRNA^{His} was determined by end labeling the intact molecule at either side, partial digestion in hot formamide, and two-dimensional homochromatography (Fig. 1a+b). The internal sequence was analyzed by the Stanley-Vassilenko gel method¹² (Fig. 2a). Probably due to the presence of a strong secondary structure bands were missing in the anticodon arm - extra loop region. We therefore analyzed partial digests of adjacent bands by two-dimensional homochromatography in order to obtain the sequence of this region (Fig.2b). The final sequence of tRNA^{His} with all its modifications is shown in Fig. 3.

DISCUSSION

This is the first tRNA^{His} sequence reported from a higher eukaryote¹³. Hence, it can only be compared with the distant se-

quences of $tRNA^{His}$ isolated from <u>E.coli</u> or yeast mitochondria^{14,15}. Transfer RNA^{His} from <u>Drosophila</u> also contains an additional, but unpaired G at the 5' end. The T Ψ C loop contains a U instead of a T as found in some other tRNAs.¹³ It has been claimed that the other $tRNA^{His}$ isoacceptor of <u>Drosophila</u> differs only by the hypermodified base queo-

Figure 3 Cloverleaf model of Drosophila melanogaster tRNA $^{\text{His}}_{\gamma}$. sine in the anticodon¹. This assumption is confirmed by partial sequencing results of this isoacceptor (Altwegg, M., unpublished results).

The regions 48 F and 56 F are labeled by "in situ" hybridization of [125 I]-tRNA^{His} to <u>D.melanogaster</u> salivary gland chromosomes¹⁶. On the other hand Dudler et al.¹⁰ have characterized a tRNA^{His} gene(s) carrying plasmid derived from the region 48 F. However, the methods used in the above mentioned experiments do no discriminate between pseudogenes¹⁷, silent genes and transcribed genes. The knowledge of the sequence of the mature tRNA^{His} will help in the identification of the tRNA genes actively expressed during the ontogeny of <u>D.melanogaster</u>.

ACKNOWLEDGEMENTS

This investigation was supported by grant No. 3.579-0.79 from the Swiss National Science Foundation and the Hescheler-Stiftung.

LITERATURE

1	White, B.N., Tener,	G.M.,	Holden,	J.,	and Suzuki,	D.T.	(1973)	J.Molec.
	Biol. 74,635-651.							

- 2 McKinnon, R.D., Wosnick, M.A. and White, B.N. (1978) Nucl.Acids Res. 5,4865-4876.
- 3 Farkas, W.R. and Jacobson, K.B. (1980) Insect Biochem. 10,183-188.
- 4 Hosbach, H.A. and Kubli, E. (1979) Mech.Ageing Dev. 10,141-149.
- 5 Owenby, R.K., Stulberg, M.P. and Jacobson, K.B. (1979) Mech.Ageing Dev. 11,91-103.
- 6 Grosjean, H.J., deHenau, S. and Crothers, D.M. (1978) Proc.Natl.Acad.Sci USA 75,610-614.
- 7 Altwegg, M. and Kubli, E. (1979) Nucl.Acids Res. 7,93-106.
- 8 Altwegg, M. and Kubli, E. (1980) Nucl.Acids Res. 8,215-223.
- 9 Silberklang, M., Gillum, A.M. and RajBhandary, U.L. (1979) Methods in Enzymology, Vol. LIV, Part G, pp. 58-109.
- 10 Dudler, R., Egg, A.H., Kubli, E., Artavanis-Tsakonas, S., Gehring, W., Stewart, R. and Schedl, P. (1980) Nucl.Acids Res., 8,2921-2938
- 11 Peattie, D.A. (1979) Proc.Natl.Acad.Sci. USA 76,1760-1764.
- 12 Stanley, J.and Vassilenko, S. (1978) Nature 274,87-89.
- 13 Sprinzl, M., Grueter, F., Spelzhaus, A. and Gauss, D.H. (1980) Nucl. Acids Res. 8,r1-22.
- 14 Singer, C.E. and Smith, G.R. (1972) J.Biol.Chem. 247,2989-3000.
- 15 Sibler, A.P., Martin, A.P. and Dirheimer, G. (1979) FEBS Lett. 107,182-186.
- 16 Schmidt, T. and Kubli, E. (1980) Chromosoma, in press.
- 17 Jacq, C., Miller, J.R. and Brownlee, G.G. (1977) Cell 12,109-120.