Supplementary Figures

A single methyltransferase YefA (RlmCD) catalyzes both m⁵U747 and m⁵U1939 modifications in *Bacillus subtilis* 23S rRNA

Benoit Desmolaize, Céline Fabret, Damien Brégeon, Simon Rose, Henri Grosjean and Stephen Douthwaite

Figure S1: MALDI tandem mass spectrum of *B. subtilis* 23S rRNA fragment containing m⁵U747

Analysis of this nucleotide was facilitated by generating partial RNase T1 digestion products from the G725 to G772 region in wild-type rRNA. The partial RNase T1 product CACGUUG>p corresponds to nucleotides 742 to 748 (box) and contains m⁵U747. This fragment had an initial mass of 2256.3 m/z (MH⁺). Generation of the ion pattern after further fragmentation by tandem MS is illustrated; the ions are annotated according to McLuckey et al 1992.

Figure S2: MALDI tandem mass spectrum of *B. subtilis* 23S rRNA fragment containing m⁵U1939

This nucleotide was analysed after generation of partial RNase A digestion products from the C1914 to C1961 region in wild-type rRNA. The partial RNase A product GAAAUU>p corresponds to nucleotides 1935 to 1940 (box) and contains m⁵U1939. This fragment had an initial mass of 1959.3 m/z (MH⁺). The ion fragmentation pattern is annotated as in Fig. S1.

Figure S3: Amino acid sequence alignment of the m⁵U methyltransferase YefA and its *B*. *subtilis* paralog YfjO

Identical amino acids are highlighted in black. Both proteins possess the N-terminal extension seen in RlmD and missing in RlmC.

Figure S4: LC-MSⁿ analysis of the m⁵U ribonucleoside from *B. subtilis* tRNAs

(A) MS of the intact negatively charged m⁵U nucleoside at m/z 257, which upon MS² fragmentation (*B*) yielding ions of m/z 124, 125, 167 and 214. (*C*) Further fragmentation of the m/z 214 ion (MS³) produced ions of m/z 80 and 96. The structures of the main ions produced are shown, and their fragmentation pattern is unambiguously consistent with the initial uridine at m/z 257 being methylated on its C-5 atom.

Figure S5: HPLC profiles of tRNA nucleosides

(*A*) The digestion products of total tRNAs from the wild-type *B. subtilis* strain 168, highlighting the unmodified nucleosides. (*B*) Enlargement of the boxed region containing the m⁵U modification. Enlargements of the same region for tRNA nucleosides from (*C*) *B. subtilis* $\Delta yefA$, (*D*) *B. subtilis* $\Delta yfjO$, (*E*) *E. coli* wild-type cells, (*F*) *E. coli* strain $\Delta rlmC/\Delta rlmD/\Delta trmA$. (*G*) Nucleoside standardization mixture that includes m⁵U; the fraction corresponding to the retention time for m⁵U is indicated.

Reference:

McLuckey, S. A., Van Berkel, G. J., and Glish, G. L. (1992) Tandem mass spectrometry of small multiply charged oligonucleotides, *J Am Soc Mass Spectrom* **3**, 60-70.

Figure S1

YefA/	MKMKPPVEKNEYYDVTFEDLTHEGAGVAKVQGFPIFVPNALPEEKAQIKVTRVKK
YfjO/	MNQQ <mark>K</mark> KQAPVELKVGQTFPLTIKRLGINGEGVGYFKKKVVFVPGALPGEEVVVQATKVQP
YefA/	GFAFGRLIELKEESPHRTDAPCPIYKQCGGCQLQHMTYEGQLLFKQKQVKDVLERIGK
YfjO/	KFSE <mark>GR</mark> IKKIRKA <mark>SEHR</mark> VAPPCPVYEQCGGCQLQHLAYSQQLREKRDIVIQSLERHTKFK
YefA/	LSKVTVHPTL <mark>GM</mark> ED <mark>PWNYRNK</mark> AQVPVG-EREGGLVAGFYQQR <mark>SHDI</mark> IDMSACLIQQSKND
YfjO/	VENMEIKETI <mark>GM</mark> DN <mark>PWNYRNK</mark> SQFQIGRSQSGSII <mark>AGLY</mark> GLD <mark>SHDI</mark> VPIKDCIVQHPATN
YefA/	EAVQAVKDICANYG <mark>V</mark> KAYNEERHKGWLRHIMVRYGVVTGEMMIVFITRTSDFPHKAKIIE
YfjO/	KTTGIVRRILEDFNVSVYNERKRKGDVRTIVTRVGFETGEVQVVLVTAKETLPHKEEIVK
YefA/	DITAQFPHVKSIVQNINPNKTNVIFGNETNVIWGEEYIYDLIGDVKFAISARSFYQVNPE
YfjO/	AIQKRLPEVKSIIQNVNGAKTSVIFGEKTKQLAGKTVIQEVLGDVSFELSARAFFQLNPE
YefA/	QTKVLYDKALEYAELQGEETVIDAYCGIGTISLFLAKQAKKVYGVEIVPEATEDAKRNAE
YfjO/	QTVKLYDEVKKAAQLTGKEKVVDAYCGVGTIGMWVADGAKEVRGMDVIKESIDDAKKNAK
YefA/	LNGNTNAEFAVGEAETVIPKWYEEGITADTLVVDPPRKGCDEALURTIVEMKPKRVVYVS
YfjO/	KHGMA <mark>NA</mark> TYVTGTAEHWLPKWTKEGFRPDVVIVDPPRTGCDSTFLDTIKKVKPKRFVYVS
YefA/	CNPGTLARDLRVLEDGGYVTREVQPVDMFPHTNHVECCVLIKLKE
YfjO/	CNPSTLAKDLQTLSK-DYRVDYIQPVDMFPQTAHVEAVARLVLKSSN

Figure S3

Figure S4

Figure S5