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Materials. FuGene 6 and complete protease inhibitor mixture
were from Roche Applied Science; Ni2+-NTA agarose beads
from Qiagen; cholesterol, 7-ketocholesterol, mouse anti-His
monoclonal antibody, and anti-FLAG M2 monoclonal antibody
from Sigma; protein G PLUS-agarose, rabbit anti-PDI antibody
and mouse anti–pan-cadherin antibody from Santa Cruz Bio-
technology; ABCA1 and ABCG1 polyclonal antibodies from
Novus Biologicals; Luciferase Reporter Assay system from
Promega; CHO-K1 cells from ATCC (CCL-61); EZ-link Sulfo-
NHS-SS Biotin and NeutrAvidin agarose beads from Thermo
Scientific; 25-hydroxycholesterol, 27-hydroxycholesterol and 7-
β-hydroxycholesterol from Avanti Polar Lipids; methyl-β-cyclo-
dextrin and hydroxypropyl-β-cyclodextrin from Trappsol; 3H-
cholesterol (60–90 Ci/mmol) from American Radiolabeled
Chemicals; anti-rabbit and anti-mouse HRP-conjugated sec-
ondary antibodies from BioRad; and 4× SDS sample loading
buffer from Invitrogen.

Buffers. Buffer A contained 10 mM Hepes-KOH pH 7.4, 10 mM
KCl, 1.5 mM MgCl2, 1 mM sodium EDTA, 1 mM sodium EGTA,
250 mM sucrose, 1% Triton X-100, and 1 protease inhibitor
mixture tablet. PBS++ contained 1× PBS supplemented with 0.02
mM CaCl2 and 0.15 mM MgCl2. Quenching buffer contained
PBS++ supplemented with 100 mM glycine. Cell lysis buffer (5×)
contained 0.5 M Tris-phosphate (pH 7.8), 1 M DTT, 0.1 M
CDTA, 50% (vol/vol) glycerol, and 5% (vol/vol) Triton X-100.

Culture Medium. Medium A contained Kaighn’s modification of
Ham’s F-12 medium supplemented with 100 units/mL penicillin
and 100 μg/mL streptomycin sulfate. Medium B comprised me-
dium A supplemented with 10% FBS. Medium C comprised
medium A supplemented with 0.2% BSA. Medium D was me-
dium A supplemented with 5% LPDS, plus 5 μM simvastatin and
50 μM mevalonic acid. Medium E was DMEM supplemented
with 100 units/mL penicillin and 100 μg/mL streptomycin sulfate.
Medium F comprised medium E supplemented with 10% FBS.
Medium G comprised medium E supplemented with 5% LPDS,
5 μM simvastatin, and 50 μM mevalonic acid. Medium H com-
prised medium E supplemented with 0.2% BSA.

Plasmids. Full-length, untagged mouse ABCG1 (666 amino acids)
was expressed in pcDNA3.1 under the control of a CMV promoter.
Untagged ABCG1 containing single point mutations (alanine
scanning) were generated by site-directed mutagenesis (Quik-
Change II XL kit; Stratagene). The coding regions of all ABCG1
alanine mutants were sequenced to confirm they contained no
other mutations. For domain swapping experiments, full-length
ABCG1 or ABCG2 containing a single COOH-terminal Flag
epitope were cloned into pcDNA3.1. Fusion proteins were
expressed from pcDNA3.1 and contained amino acids 1–409 of
mouse ABCG1 fused to amino acids 394–655 of human ABCG2
(ABCG1-ABCG2), or amino acids 1–393 of human ABCG2 fused
to amino acids 410–666 of mouse ABCG1 (ABCG2–ABCG1).
These fusions proteins contained a single COOH-terminal Flag
epitope. Where indicated, pcDNA3.1 contained wild-type mouse
ABCG1 fused to either three tandem COOH-terminal Flag
epitope tags or GFP. The cDNA for mouse Niemann-Pick type
C-1 (NPC-1) (amino acids 1–1,277) was cloned into pEYFP-N1
to generate NPC-1 fused to YFP at the COOH terminus.
The following recombinant expression plasmids have been

previously described by others elsewhere: pTK–herpes simplex

virus (HSV)–SCAP–T7, encoding HSV fused to hamster SCAP
under the control of the HSV-driven thymidine kinase (TK)
promoter (1); pTK–INSIG-2–Myc, encoding human INSIG-2
fused to six tandem copies of a c-myc epitope tag driven by the
HSV–TK promoter (2, 3); a sterol-sensitive luciferase reporter
plasmid encoding a generic TATA box and three sterol response
elements (SRE; −325 to −225) from the hamster 3-hydroxy-
3-methylglutaryl-coenzyme A (HMG-CoA) synthase promoter
fused into the luciferase pGL2 basic vector (pSynSRE) (4);
pDsRed–Rab5 and pDsRed–Rab11 encoding human Rab5 and
Rab11 fused to DsRed under the control of a CMV promoter
(5). Detailed primer sequences are available upon request.

Preparation of Sterol/Methyl-β-Cyclodextrin Complexes.Cholesterol,
and oxysterol derivatives of cholesterol, were complexed to cy-
clodextrin using a minor modification of the protocol described
by Klein et al. (6). Briefly 10 mg of the indicated sterol (stock
concentration 10 mg/mL) in 100% ethanol was added slowly to
a stirred solution of 5% wt/vol methyl-β-cyclodextrin at 80 °C,
until a clear solution was obtained. The resulting solution was
lyophilized and the dried complex reconstituted in nanopure
water to a sterol concentration of 2.5 mM.

Biotinylation of Cell Surface Proteins. Freshly isolated primary
mouse peritoneal (thioglycollate-elicited) macrophages were
allowed to adhere to six-well plates for 18 h in medium F. Cells
were treated in medium G with or without 1 μM liver X receptor
(LXR) agonist GW3965 for 24 h. Cells were washed in PBS++

and then incubated for 30 min on ice with 250 μM EZ-link Sulfo-
NHS-SS Biotin (diluted in PBS++). The cells were washed in
PBS++ and the reaction was quenched for 30 min on ice in
quenching buffer. Biotin-modified proteins were immunopre-
cipitated with NeutrAvidin streptavidin beads overnight at
4 °C. Biotin-modified proteins were collected by centrifugation
at 5,000 × g for 5 min. Intracellular, unmodified proteins were
collected from the supernatant of the 5,000 × g spin. The
streptavidin beads were washed three times in PBS++ before
proteins were removed from the beads by incubation at 42 °C for
20 min, in 2× SDS sample loading buffer supplemented with
β-mercaptoethanol.

Immunoprecipitation of Protein Complexes. HEK293 cells were
transfected in medium F with the indicated plasmids. Cells were
lysed in buffer A. Proteins (100 μg) in buffer A were incubated
overnight with anti-FLAG M2 antibody (used at 1:1,000) at 4 °C.
Protein complexes were incubated with protein G-PLUS agarose
beads at 4 °C for 6 h before centrifugation at 5,000 × g for 5 min.
Beads were washed with buffer A. Protein complexes were re-
trieved by incubation at 42 °C for 20 min in 2× SDS sample
buffer supplemented with β-mercaptoethanol.

Western Blot Analysis. From biotinylation studies, 5% of each
fraction (total cell lysate, biotinylated proteins, unmodified in-
tracellular proteins) was loaded and separated by SDS/PAGE.
From immunoprecipitation studies, 20% of protein complexes
were separated by SDS/PAGE. From overexpression and im-
munoprecipitation studies, cells were lysed in buffer A, and
proteins (10 μg) were separated by SDS/PAGE.
Proteins were transferred to polyvinylidene difluoride mem-

brane. Primary antibodies were diluted 1:1,000 (ABCA1, ABCG1,
pan-cadherin, HA) or 1:5,000 (PDI, β-actin) in 1× TBS con-
taining 0.1% Tween 20 and 5% nonfat milk. Immune complexes
were detected with anti-rabbit (ABCA1, ABCG1, PDI) or anti-
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mouse (β-actin, pan-cadherin, HA) HRP-conjugated secondary
antibodies diluted 1:10,000.

Cell Transfection and Luciferase Reporter Assay. CHO-K1 cells were
plated in medium B 1 d before transfection and cultured to
reach 80% confluence. Medium B was replaced with medium A
before transfection. Cells were transfected using FuGeneHD
(Roche) according to manufacturer instructions. Each well was
transfected with 100 ng pSynSRE plus 5 ng of each expression
plasmid, and 50 ng β-galactosidase expression plasmid as a con-
trol to normalize for minor changes in transfection efficiency.
After 5 h, the culture medium was replaced with specific treat-
ment media, as indicated.
Cells were cultured for 24 h, washed twice with PBS, and lysed

with 1× cell lysis buffer. The luminometer assays were performed
using Promega luciferase reporter assay system according to in-
structions. The luciferase activity was measured using a Centro
XS3 LB 960 luminometer (Berthold Technologies).

Cellular Efflux of Cholesterol. HEK293 or CHO-K1 cells trans-
fected with the indicated plasmids were incubated with 1 μCi/mL
3H-cholesterol for 24 h in medium H. The media was removed,
the cells washed and equilibrated for 24 h in medium H. To
determine cellular cholesterol efflux, cells were incubated in

fresh medium H in the presence or absence of 50 μg/mL HDL
for 4 h. The radioactive content of the cells and media was
determined as previously described (7). Cholesterol efflux was
determined by dividing the radioactive content of the media
by the sum of the radioactivity in the cells and the media.
The basal efflux (% cholesterol that effluxes to medium H; ∼1–
2%) was subtracted from the values obtained in the presence
of HDL.

mRNA Quantification. Alveolar macrophages were isolated from
bronchoalveolar lavage as previously described (8). Total RNA
was isolated from alveolar macrophages using TRIzol (In-
vitrogen), and cDNA synthesized (Applied Biosystems). Quan-
titative real-time PCR was performed on a LightCycler 480
(Roche). mRNA expression was normalized to expression of
36B4. Detailed primer sequences are available upon request.

Statistics. Statistical analysis was performed using GraphPad
Prism 5. For luciferase reporter assays and cholesterol efflux
assays, statistical analysis was performed by one-way ANOVA,
comparing ABCG1 (wild-type, mutant, or chimera) to control
transfected cells. For luciferase reporter assays with CD:sterol
complex treatment, statistical analysis was performed by two-
way ANOVA.
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Fig. S1. Alignment of members of the murine ABCG family with human INSIG-2 identifies conserved residues. Amino acids are numbered based on the murine
ABCG1 sequence. TM 1–6 are boxed (dashed lines). Individual boxed residues (shaded gray) indicate some level of conservation. *Identifies residues of INSIG-2
that when mutated resulted in loss of INSIG-2 function (1).
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Fig. S2. Comparison of transmembrane (TM) α-helices 1–6 of ABCG1 with reported sterol-sensing domains. The sequence corresponding to TM 1–6 of ABCG1
was aligned and compared with the previously reported sterol-sensing domain of HMG-CoA reductase, SCAP, and NPC-1.
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Fig. S3. Schematic of an ABCG1 monomer showing the approximate location of individual amino acid mutations (black ovals) within the six TM α-helices (1–6)
or the Walker A motif.
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Fig. S4. Wild-type ABCG1 and ABCG1 containing inactivating alanine substitutions localize to similar intracellular vesicles. Cos-7 cells were cotransfected with
plasmids encoding either untagged wild-type ABCG1 or the indicated mutant forms of ABCG1 and NPC-1–YFP. All images were taken at 63× magnification.
Yellow dots indicate colocalization in the merged images.
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Fig. S5. Wild-type ABCG1 and ABCG1 containing alanine substitutions form homodimers. HEK293 cells were cotransfected with wild-type (WT) ABCG1–FLAG
and either WT ABCG1–HA or the indicated mutant ABCG1–HA. Cells were lysed and protein samples (10 μg) were analyzed by Western blot (Lower, immu-
noblot, IB). Cell lysates were also treated with anti-FLAG and the immunoprecipitated (IP) protein complexes separated by SDS/PAGE, transferred to a mem-
brane, and the membrane probed with anti-HA (Upper).
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Fig. S6. ABCG1 does not attenuate 7-ketocholesterol–mediated repression of SREBP-2 processing. CHO-K1 cells were transfected with pSynSRE, an empty
plasmid (open bars) or a plasmid encoding either wild-type ABCG1 or ABCG1–K124M. Following 5 h transfection, cells were treated with the indicated
concentration of oxysterol for 24 h before determination of normalized luciferase activity. **P < 0.01 vs. pSynSRE plus control.
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Fig. S7. Alveolar macrophages from Abcg1−/− mice express elevated levels of the cholesterol modifying enzymes, 25- and 27-hydroxylase. Alveolar macro-
phages were isolated from the lungs of wild-type and Abcg1−/− mice. mRNA levels of cholesterol 25-hydroxylase (CH25-OH) and cholesterol 27-hydroxylase
(CH27-OH) were measured by quantitative real-time PCR. mRNA levels were normalized to 36B4, and values given as fold change relative to wild-type mice.
***P < 0.001 vs. WT macrophages.
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