Supporting Information

Lombardi et al. 10.1073/pnas.1116819108

Fig. S1. Decreased mid-late meiotic gene induction without Yta7. RT-qPCR analysis of cDNA from SK1 WT and $yta7\Delta$ homozygotes. Cells were collected after 8 h in sporulation medium containing 1% potassium acetate. Values were normalized to ACT1 and are relative to transcript levels in YPAcetate.

Fig. S2. Yta7 and H2A.Z functioned together for proper GAL gene induction. RT-qPCR analysis of GAL1 transcript levels after 1 h with galactose. GAL gene induction was assayed in cells lacking both Yta7 and Swr1, the catalytic subunit of the H2A.Z deposition complex. The *swr1* Δ mutant was used in lieu of the *htz1* Δ mutant, because the *htz1* Δ mutant exhibits phenotypes due to both the loss of H2A.Z and problematic Swr1 activity in the absence of H2A.Z (1, 2). Cells were pregrown in YPRaffinose (2%, non-inducing).

- 1. Halley JE, Kaplan T, Wang AY, Kobor MS, Rine J (2010) Roles for H2A.Z and its acetylation in GAL1 transcription and gene induction, but not GAL1-transcriptional memory. PLoS Biol 8: e1000401.
- 2. Morillo-Huesca M, Clemente-Ruiz M, Andújar E, Prado F (2010) The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z. PLoS ONE 5:e12143.

Fig. S3. Little or no changes to histone transcript levels in the $yta7\Delta$ mutant. RNA analysis was performed on asynchronously growing cells. *HHT* and *HHF* primer sets detect total H3 and H4 transcripts, respectively, whereas *HTA1* primers are specific to the H2A transcripts from the "copy 1" locus.

Fig. S4. Yta7 was required for proper pGAL1::FMP27 induction. RT-qPCR analysis of FMP27 transcript levels in raffinose (Raf; 2%, non-inducing) and after 1 h with galactose (Gal; 2%, inducing). The level of each transcript was normalized to ACT1 mRNA levels. The error bars represent the SEM for four biological replicates.

ID	Name	Fold change
REP1_2UM	REP1_2UM	0.18
REP2_2UM	REP2_2UM	0.20
FLP_2UM	FLP_2UM	0.21
YDL227C	HO	0.46
YDR428C	BNA7	0.49
YHR057C	CPR2	0.50
YHR029C	YHI9	0.54
YFR012W	YFR012W	0.56
YHRUISW		0.56
YIRODOC		0.56
		0.57
VNI 335W/		0.58
YDB369C	XRS2	0.00
YGR201C	YGB201C	0.60
YIR025C	BNA1	0.61
YGR259C	YGR259C	0.61
YMR182C	RGM1	0.61
YNL012W	SPO1	0.61
YHR067W	HTD2	0.61
YOL141W	PPM2	0.1
YDR539W	YDR539W	0.61
YEL030W	ECM10	0.61
YHL022C	SPO11	0.62
YIL037C	PRM2	0.62
YIL015C-A	YIL015C-A	0.62
YJL028W	YJL028W	0.62
YGL104C	VPS73	0.62
YIL089W	YIL089W	0.63
YDR070C	YDR070C	0.64
YKL114C	APN1	0.64
YPL278C	YPL2/8C	0.64
YGRI69C	PUS6	0.64
		0.64
Tr class*	Truclass*	0.04
YFR138W/-A	YFR138\//-A	0.05 ± 0.050
YML079W	YMI 079W	0.65
YGR122C-A	YGR122C-A	0.65
YOR338W	YOR338W	0.66
YGL258W	VEL1	0.66
YGL259W	YPS5	0.66
YPL165C	SET6	0.66
YBR045C	GIP1	0.66
YOR295W	UAF30	0.66
YGL027C	CWH41	0.67
YBR013C	YBR013C	0.67
YDL195W	SEC31	0.67
YBR261C	YBR261C	0.67
YDR258C	HSP78	0.67
YFL059W	SNZ3	0.68
YDR285W		0.68
YINK315W-A	YIVIR315VV-A	0.68
		0.68
	SPO22	0.08
YNR064C	YNR064C	0.00
YRI 098W/	RNA4	0.69
YFR023W	PFS4	0.69
YJL089W	SIP4	0.69
YGL240W	DOC1	0.69
YDR493W	YDR493W	0.69
YDR336W	YDR336W	0.70

Table S1. Genes significantly affected in the $yta7\Delta$ mutant

Table S1. Cont.

ID	Name	Fold change
YCR001W	YCR001W	0.70
YLR054C	OSW2	0.70
YLR035C	MLH2	0.70
YOR391C	HSP33	0.70
YGL204C	YGL204C	0.70
YGL205W	POX1	0.70
YOR389W	YOR389W	0.70
YFL044C	OTU1	0.71
YBR148W	YSW1	0.71
YGR040W	KSS1	0.71
YGR019W	UGA1	0.71
YAL058W	CNE1	0.71
YGL159W	YGL159W	0.71
YPR200C	ARR2	0.72
YIL152W	YIL152W	0.72
YGL142C	GPI10	0.72
YMR009W	ADI1	0.72
YCL001W-A	YCL001W-A	0.72
YORUZZC	YORUZZC	0.72
YOR192C	THI/2	0.73
YJL099VV	CH56	0.73
YINL333VV	SNZZ	0.73
YDD002C	ECIVIT9	0.73
Y ROJOC	YVI2	0.73
YELO61W	X1L2 XEL061W/	0.75
YMI 131W/	YMI 131W/	0.74
YMI 054C	CYB2	0.74
YPR172\//	YPR172W	0.74
YGI 057C	YGL057C	0.74
YNI 334C	SNO2	0.75
YER134C	YER134C	0.75
YFR047C	BNA6	0.75
YFL066C	YFL066C	0.75
YML112W	СТКЗ	0.75
YER132C	PMD1	0.75
YDR332W	YDR332W	0.75
YNL128W	TEP1	0.76
YPL147W	PXA1	0.76
YNL149C	PGA2	0.76
YNL336W	COS1	0.76
YDR066C	YDR066C	0.76
YOR386W	PHR1	0.76
YLR032W	RAD5	0.76
YKR009C	FOX2	0.76
YHL048W	COS8	0.77
YFL058W	THI5	0.77
YNL187W	YNL187W	0.77
YOR356W	YUR356W	0.77
YHR109W		0.77
YDD239C		0.77
		0.78
	Iniiz RNA5	0.78
	SNI122	0.78
YPR127W	YPR127W/	0.78
YMI 094W	GIM5	0.70
YLR059C	REX2	0.79
YGR263C	YGR263C	0.79
YER096W	SHC1	0.79
YGR011W	YGR011W	0.79
YNL009W	IDP3	0.79

Table S1. Cont.

ID	Name	Fold change
YBR192W	RIM2	0.80
YGR091W	PRP31	0.80
YDL030W	PRP9	0.80
YPL216W	YPL216W	0.80
YDL108W	KIN28	0.81
YKL165C	MCD4	1.27
YDR421W	ARO80	1.30
YMR147W	YMR147W	1.32
YFR018C	YFR018C	1.33
YER179W	DMC1	1.34
YOL110W	SHR5	1.34
YFR020W	YFR020W	1.35
YHR095W	YHR095W	1.35
YML100W-A	YML100W-A	1.36
YMR319C	FET4	1.36
YPR053C	YPR053C	1.37
YGR225W	AMA1	1.38
YIL162W	SUC2	1.39
YJR094C	IME1	1.39
YJL212C	OPT1	1.40
YGR203W	YGR203W	1.40
YJL217W	YJL217W	1.42
YGR280C	PXR1	1.42
YBR072C-A	YBR072C-A	1.42
YJL133C-A	YJL133C-A	1.43
YDR100W	TVP15	1.44
YBL012C	YBL012C	1.44
YCR024C-A	PMP1	1.44
YCL042W	YCL042W	1.45
YHL026C	YHL026C	1.46
YOR383C		1.46
YNL145W	MFA2	1.46
YJRTISW	YJRTISW	1.47
Y A ROOPIN	YARODOL	1.47
	FARUZOVV	1.47
		1.40
VDP013C	VDD012C	1.40
		1.40
YNI 015W	PRI2	1.45
YGL089C	ΜΕ(ΔΙ ΡΗΔ)2	1.50
YBR044C	TCM62	1.55
YDB033W	MRH1	1.50
YGR271W	SI H1	1.56
YPL092W	SSU1	1.58
YDL048C	STP4	1.58
NTS2-1	NTS2-1	1.59
YJL037W	IRC18	1.62
NTS1-2	NTS1-2	1.63
YOR318C	YOR318C	1.64
YGR146C-A	YGR146C-A	1.64
YBR147W	YBR147W	1.66
YGL158W	RCK1	1.67
YJL150W	YJL150W	1.68
YDR342C	HXT7	1.69
YJR004C	SAG1	1.69
YJL079C	PRY1	1.70
YBR092C	PHO3	1.71
YGR268C	HUA1	1.73
YNL160W	YGP1	1.76
YKR041W	YKR041W	1.76
YHR022C-A	YHR022C-A	1.77

Table S1. Cont.

ID	Name	Fold change
YDL185W	TFP1	1.77
YDR034W-B	YDR034W-B	1.85
YBR019C	GAL10	1.86
YBL013W	FMT1	1.88
YMR101C	SRT1	1.96
YNL066W	SUN4	1.98
YIL011W	TIR3	2.01
YOL047C	YOL047C	2.15
YFR035C	YFR035C	2.20
YHR079C-A	SAE3	2.26
YGR269W	YGR269W	3.19

*Forty-five Ty class transposons were decreased 0.65 \pm 0.04.

Table S2. Strains used

PNAS PNAS

Strain	Genotype	Source
W303-1a	MATα ade2-1; can1-100; his3-11; leu2-3,112; trp1-1; ura3-1 (alias JRY3009)	R. Rothstein (Columbia University)
JRY7754	MAT_{α} htz1 Δ ::HIS3MX	Kobor et al. (1)
JRY7972	MATα HTZ1-FLAG::kanMX	Babiarz et al. (2)
JRY8689	MATα HTZ1-FLAG::kanMX YTA7-TAP::TRP1	This study
JRY9199	MATα HTZ1-FLAG::kanMX yta7Δ::natMX	This study
JRY9200	MAT_{α} yta7 Δ ::nat MX	This study
JRY9201	<i>ΜΑΤ</i> α; pRS316	This study
JRY9202	$MAT\alpha$ yta7 Δ ::natMX; YTA7/pRS316	This study
JRY9203	MATα yta7Δ::natMX; yta7K460A/pRS316	This study
JRY9204	MATα yta7Δ::natMX; yta7E519Q/pRS316	This study
JRY9205 and 9206	$MAT\alpha$ (hht1-hhf1) Δ ::HygMX	This study
JRY9207 and 9208	MATα yta7 Δ ::natMX (hht1-hhf1) Δ ::HygMX	This study
JRY9209 and 9210	MATα HIS3MX-pGAL1::FMP27 RPB3-3HA::TRP1	This study
JRY9211 and 9212	MATα HIS3MX-pGAL1::FMP27 RPB3-3HA::TRP1 yta7Δ::natMX	This study
JRY9213	MATα HTZ1-FLAG::kanMX HIS3MX-pGAL1::FMP27	This study
JRY9214	MATα HTZ1-FLAG::kanMX HIS3MX-pGAL1::FMP27 YTA7-TAP::TRP1	This study
JRY9215	ΜΑΤα ΥΤΑ7-ΤΑΡ::TRP1	This study
JRY9216 and 9217	MATα HIS3MX-pGAL1::YTA7-TAP::TRP1 HTZ1-FLAG::kanMX	This study
JRY9218	MATα HTZ1-FLAG::kanMX swr1Δ::HIS3MX	This study
JRY9219 and 9220	MATα HTZ1-FLAG::kanMX swr1Δ::HIS3MX yta7Δ::natMX	This study
For sporulation analysis		
SK-1	MATa/α ho::LYS2 lys2 ura3 (alias JRY2692)	N. Kleckner (Harvard University)
JRY9223	MATalα ho::LYS2 lys2 ura3 yta7∆::natMX	This study
For Fig. 2D	Derived from DDY277 and DDY282 (3); all ADE2 his3 leu2 lys2∆ trp1 ura3	
JRY9224	MAT α HMRI Δ ; pRS316	This study
JRY9225	MATα HMRIΔ-E-Boundary-a1; pRS316	This study
JRY9226	MATα HMRIΔ-E-Boundary-a1 yta7Δ::kanMX; pRS316	This study
JRY9227 and 9228	MATα HMRI∆-E-Boundary-a1 yta7∆::kanMX; YTA7/pRS316	This study
JRY9229	MATα HMRIΔ-E-Boundary-a1 yta7Δ::kanMX; yta7K460A/pRS316	This study
JRY9230	MATα HMRIΔ-E-Boundary-a1 yta7 Δ ::kanMX; yta7E519Q/pRS316	This study

1. Kobor MS, et al. (2004) A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2:E131. 2. Babiarz JE, Halley JE, Rine J (2006) Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae. Genes Dev

20:700–710. 3. Jambunathan N, et al. (2005) Multiple bromodomain genes are involved in restricting the spread of heterochromatic silencing at the Saccharomyces cerevisiae HMR-tRNA boundary. Genetics 171:913–922.

Table S3. Primers used

Strain construction	
yta7 KO	TCTCTTCTCGCTATTTATTCACAATTGGTGCAGAAAGAACCGGATCCCCGGGTTAATTAA
	AACTACATTTAAGAATTATATAAACATTATGGACTCCTGCCGATGAATTCGAGCTCGTTT
YTA7 cloning	
yta/K460A	
vto755100	
ytaresisQ	
ντα7.ταρ	
TIA/-TAF	
(bbt1_bbf1) KO	
nGAI 1FMP27	ΔΔGΔΔCGGTΔGCTΔTTΔCΔΔΔGGΔCΔGTΔΔΔΔGCΔΔΔCΔGGΔΔTCGΔGCTCGTTTΔΔΔC
<i>p</i> c · c · <i>m</i> · <i>m</i> z ·	ATATAAGCCACTIGTACAGTAGAACATTAATCGGAAACATCATTITGAGATCCGGGTTTT
RPB3-HA	AATGGGTAATACTGGATCAGGAGGGTATGATAATGCTTGGCGGATCCCCGGGTTAATTAA
	GTTCACTTGTTTTTTCCTCTATTACGCCCACTTGAGAAGAATTCGAGCTCGTTTAAAC
pGAL1::YTA7	CCCATTGTTGTTTTCGACAGTCATAAAAAGAAGTTACCACGAATTCGAGCTCGTTTAAAC
,	CTTCAACGTCGCTACCGCGTCTATTCCTTAAATTTCGTGCCATTTTGAGATCCGGGTTTT
qPCR, listed in order of use	
SPO1	GAC AAC TAT CCA AAC GGC TCC AAG
	CCA GTG GGT AAC ATA CTG CTA ACT
ZIP1	AAGTGTCCTAAGGTGGATCATATAAG
	GAA GGG TTG GTT AAC TCT AGG TC
GIP1	CAC ATT TCG CGG CCT TAC TAA TA
	TGAGGTACTCCGATCCTTTATACA
PXA1	TTGGCTTAACTTACCTAGATGCCAT
	CGT TGT CAA TCG ACG TGA TTG C
FOX2	ATA TCG ATC CCA CGC TAG CCA A
	TAC AGC GGC GTT ATC CAA TAC A
ACT1	TGTCCTTGTACTCTTCCGGT
	CCGGCCAAATCGATTCTCAA [described by Babiarz et al. (1)]
SPO11	CCT ATG GGA TTA GCA TAG CCC TA
	TGTTGGCAGTCAGAGATGCTATC
YSW1	
C 11 4 4 400	GGC AGA ICI CIC GIA GAA CCI
GALT +1,400	
C 41 10 - 1 9CF	
GAL10 +1,805	
DDDQ	
FNFO	TCGAATACTCTCAGGCATCATTTCT [described by Rebierz et al. (1)]
GAL10 +535	
GAL10 +355	
GAL10 +114	GGT TAC AGG TGG TGG TGG ATA C
5,270 1111	GAT GCT TGG TCA AGA CCT CTA A
GAL1 Prom	AAGTACGGATTAGAAGCCGCC
	GGCCAGGTTACTGCCAATTT
GAL1 +97	CTGAGTTCAATTCTAGCGCAAAGG
	CTCTACCAGGCGATCTAGCAACAA
GAL1 +756	CTCTGTTTGCGGTGAGGAAGATCA
	CAGCTGTAGTGACTTCTACCACTC
GAL7 –326	AGCACGAGCC GCGGAGTTCA T
	GATCACGGTCAACAGTTGTCCGAG
GAL7 +217	GGTTAGG TCAACAGGAG GCTG
	AGATTGCACTTTAAGCAGCCTATT
SUC2 –317	ATACG CGTAGCGTTA ATCGACC
	TAC TAT AGA GCC CTT AGG CAA CAT
SUC2 +69	CACTAACGTATATGATGCTTTTGCA
	TTT CAT CGT ACC ACA ACC CAT T
SUC2 +564	AGCTGCCAACTCCACTCAATTC
	TTG GCA AAT GCA GAT TCT AGC TT
ADY3	AAT TAC TGA CGA GTT AGC TGG AAA
	TGCGATTGCACATAGGTAAGGTC

Table S3. Cont.

TAS PNAS

ННТ	GGT GGT GTT AAG AAG CCT CA
	CTT GAG CGA TTT CTC TGA CC
HHF	AGC TAG AAG AGG TGG TGT CA
	TCTTTCTCTTGGCGTGTTCG
HTA1	ACGTTACCATTGCCCAAGG
	GTTTAGTTCCTTCCGCCTTC [described by Fillingham et al. (2)]
GAL10 +1,092	CAG ACC GAG TTG CAG GTT GAA GAC
	CAACAATGCTGGCGCCCAAATTG
ORF-free Chr I	GTT TAT AGC GGG CAT TAT GCG TAG ATC AG
	GTT CCT CTA GAA TTT TTC CAC TCG CAC ATT C [described by Mason and Struhl (3)]
pGAL1::FMP27	CTGGGGTAATTAATCAGCGAAGCGATG
	CACTTGTACAGTAGAACATTAATCGGAAAC [described by Mason and Struhl (3)]
<i>FMP27</i> , 0.5 kb	CGCAATTAGTCAACAACGATATCACGATTG
	CCTACTTGAAGTCCATCCTTCAGAGG [described by Mason and Struhl (3)]
<i>FMP27</i> , 2 kb	CATATCATCCACCCTAGGTGCTAGGTCGG
	GAGCTGACCAGACCTAACCATAGTAGCGTG [described by Mason and Struhl) (3)]
<i>FMP27</i> , 4 kb	AGATATTACTCGTTGTTCGTGCCCAG
	TCCCAAAACCCTAGTTTAACAGAAGG [described by Jimeno-Gonzalez et al. (4)]
<i>FMP27</i> , 6 kb	CGTACTGTTGAAATGGAACGAGGACGC
	ATCGCTTCCATACTCGTTGTATCATCAGTC [described by Mason and Struhl) (3)]
<i>FMP27</i> , 8 kb	GAGGGTCACA GATCTATTAC TTGCCC
	GTTGTGAGTTGCTTCAGTGGTGAAGTG [described by Mason and Struhl (3)]

Chr, chromosome; Prom, promoter.

1. Babiarz JE, Halley JE, Rine J (2006) Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae. Genes Dev 20: 700–710.

2. Fillingham J, et al. (2009) Two-color cell array screen reveals interdependent roles for histone chaperones and a chromatin boundary regulator in histone gene repression. *Mol Cell* 35: 340–351.

3. Mason PB, Struhl K (2005) Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol Cell 17:831-840.

4. Jimeno-Gonzalez S, Haaning LL, Malagon F, Jensen TH (2010) The yeast 5'-3' exonuclease Rat1p functions during transcription elongation by RNA polymerase II. Mol Cell 37:580-587.