Advances in multiphoton microscopy for imaging embryos Willy Supatto, Thai V Truong, Delphine Debarre and Emmanuel Beaurepaire ## **Supplementary Material** Supplementary Table 1. Strategies for fast imaging speed in multiphoton microscopy vs linear microscopy: theoretical scaling of illumination parameters. ## **SUPPLEMENTARY TABLE 1** | | Point-scanning
2p-microscopy | | Fast point-
scanning
2p-microscopy
(<i>N</i> -time faster
scan) | | Multifocal multiphoton microscopy (<i>N</i> foci) | | Light-sheet
2p-microscopy | | |---|---------------------------------|----|--|---------------------|--|-----|------------------------------|-------------------------------| | Scanning
scheme | | | | | | | | | | | Point
scanning | | Fast point scanning | | Multiple point scanning | | Fast line
scanning | | | Fluorescence
excitation
mode | 1p | 2p | 1p | 2p | 1p | 2p | 1p | 2р | | Acquisition speed (pixel rate) | r | r | Nr | Nr | Nr | Nr | Nr | Νr | | Numerical
aperture of
illumination
objective | NA | NA | NA | NA | NA | NA | $\frac{1}{\alpha}$ NA | $\frac{1}{\alpha}$ NA | | Illumination
time per
excited
volume | t | t | $\frac{1}{N}$ t | $\frac{1}{N}$ t | t | t | $\frac{\alpha^2}{N}$ t | $\frac{\alpha^4}{N}$ t | | Illumination
laser intensity
per focus | I | I | NI | √ <i>N</i> I | I | I | $\frac{N}{\alpha^2}$ I | $\frac{\sqrt{N}}{\alpha^2}$ I | | Illumination
laser average
power | Р | Р | N P | √ <i>N</i> P | N P | N P | N P | √N P | Supplementary Table 1. Strategies for fast imaging speed in multiphoton microscopy vs linear microscopy: theoretical scaling of illumination parameters. This table completes Table 1 with parameter scaling in the cases of 1p-microscopy techniques (see Table 1 caption for explanations). It shows that in linear microscopy, increasing the speed N-times always requires N-fold increase in laser power to obtain images with the same signal level. In nonlinear microscopy, the square root of laser power is sufficient, except in the case of multifocal approach.