Supporting Information

Selective Molecular Sequestration with Concurrent Natural Product Functionalization and

Derivatization: From Crude Natural Product Extracts to a Single Natural Product Derivative in One Step

Viktor Krchňák, Jaroslav Zajíček, Patricia A. Miller and Marvin J. Miller*

Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA

mmiller1@nd.edu

Table of Contents

1. General Information	S2
2. Types of peppercorn and amounts of materials extracted	S3
3. Microbiological assays	S4
4. ¹ H and ¹³ C NMR tables, spectra and multidimensional NMR	S6

General Information

Commercially available ACS grade solvents were used without further purification. Peppercorns were purchased from Pepper-Passion Inc. (Issaquah, WA, www.pepperpassion.com), Allspice, cloves and ground cloves were obtained from Martin's supermarket, South Bend, IN, USA. The Rink resin (100-200 mesh, 1% DVB, 0.75 mmol/g) and Wang resin (100-200 mesh, 1% DVB, 1.0 mmol/g) were from Advanced ChemTech (Louisville, KY, www.peptide.com), the hydroxymethyl resin (100-200 mesh, 1% DVB, 0.98 mmol/g) from NovaBiochem (San Diego, CA, www.emdbiosciences.com/html/NBC/home.html). Synthesis was carried out on Domino Blocks in disposable polypropylene reaction vessels. A Labquake Tube Rotator was used for gentle but efficient tumbling of resin slurry.

All NMR spectra were recorded using 600 MHz or 800 MHz spectrometers. ¹H and ¹³C chemical shifts, δ_{H} and δ_{C} , are reported relative to the corresponding residual solvent signal (CD₃OD δ_{H} =3.31 ppm, δ_{C} =49.00 ppm; CD3CN δ_{H} =1.94 ppm, δ_{C} =1.39 ppm).

All reactions were carried out at ambient temperature (~21 °C) unless stated otherwise. The volume of wash solvent was 10 mL per 1 g of resin. For washing, resin slurry was shaken with the fresh solvent for at least 1 min before changing the solvent. After adding a reagent solution, the resin slurry was manually vigorously shaken to break any potential resin clumps. Resin-bound intermediates were dried by a stream of nitrogen for prolonged storage and/or quantitative analysis.

For the LC/MS analyses, a sample of resin (~5 mg) was treated with TFA in dichloromethane (DCM), the cleavage cocktail was evaporated by a stream of nitrogen, and cleaved compounds extracted into 0.5 mL of MeOH. Alternatively, a sample of resin-bound product on a silicon-based linker was cleaved by 0.1 M TBAF in THF for 30 min, the solution was diluted with MeOH and analyzed.

Types of peppercorn and amounts of materials extracted.

Entry	Peppercorn	Total extract	piperine	piperettine
1	Lampong Black	292 mg	116 mg	19.7 mg
2	Malabar Black	241 mg	77 mg	14.5 mg
3	Madagascar Black	248 mg	89 mg	16.6 mg
4	Sarawak Black	204 mg	61 mg	12.6 mg
5	Tellicherry Black	248 mg	71 mg	14.8 mg
6	Talamanca Del Caribe Black	252 mg	80 mg	8.7 mg
7	Vietnamese Black	223 mg	63 mg	11.0 mg
8	Pohnpei peppercorns	278 mg	82 mg	15.1 mg
9	Muntok White	213 mg	68 mg	12.3 mg
10	Talamanca Del Caribe White	249 mg	87 mg	9.3 mg
11	Sarawak Extra Fancy White	227 mg	60 mg	12.3 mg
12	Freeze Dried Green peppercorns	315 mg	68 mg	15.8 mg

Table 1. Total extracts and content of piperine and piperettine in peppercorns.

Table 2. The effect of spice, its quantity and freshness on yield.

Entry	Spice	Quantity	Age	Yield	
1	Lampong Black	50 mg	freshly ground	2 %	
2	Lampong Black	100 mg	freshly ground	7 %	
3	Lampong Black	200 mg	freshly ground	19 %	
4	Lampong Black	400 mg	freshly ground	37 %	
5	Lampong Black	800 mg	freshly ground	46 %	
6	Lampong Black	800 mg	freshly ground	45 %	
7	Lampong Black	800 mg	1 day old ^a	21 %	
8	Lampong Black	800 mg	2 days old ^a	20 %	
9	Lampong Black	800 mg	2 days old ^a	18 %	
10	Lampong Black	800 mg	2 days old ^b	36 %	
11	Lampong Black	800 mg	4 days old ^a	6 %	

12	Allspice	800 mg	freshly ground	20 %
13	cloves	800 mg	freshly ground	69 %
14	ground cloves	800 mg	freshly opened	65 %

Note: Yield was estimated from UV response on LC traces and calculated with respect to the initial resin loading; ^aexposed to open air; ^bin a sealed container

The LC/MS analyses were carried out using a 3 x 50 mm C18 reverse phase column. Mobile phases: 10 mM ammonium acetate in HPLC grade water (A) and HPLC grade acetonitrile (B). A gradient was formed from 5% to 80% of B in 10 min at 0.7 mL/min. The MS electrospray source operated at capillary voltage 3.5 kV and a desolvation temperature 300 °C.

Purification was carried out on a C18 column (19 x 100 mm, 5 um particles). A solvent gradient was formed from 10 mM aqueous ammonium acetate and acetonitrile with a flow rate of 15 mL/min.

General Procedure for Agar Diffusion Antibiotic Susceptibility Assay

Antibacterial activity of the compounds was determined by an agar diffusion assay.¹ All test organisms used in this study were from sources provided in **Table 3**. Overnight cultures of test organisms were grown in LB broth for 18-24 hours and standard suspensions of ~1.5 x 10^6 cfu/mL were prepared in sterile saline solution (0.9% NaCl) according to a BaSO₄ 0.5 McFarland Standard (bioMérieux, Inc).^{2,3} This standardized suspension (0.1 mL) was added to 34 mL of sterile, melted, and tempered (47-50 °C) Mueller-Hinton No. 2 agar (HiMedia Laboratories). After gentle mixing, the inoculated melted agar was poured into a sterile petri dish (145 mm x 20 mm, Greiner Bio-One) and allowed to solidify. Wells of 9 mm diameter were cut from the petri dish agar and filled with 50 µL of the test sample solution. The petri dish was incubated at 37 °C for 18-24 hours and the inhibition zone diameters were measured (mm) with an electronic caliper after 24-48 hours. The results are summarized in **Table 4**.

Table 3. Test organisms used in this research.

Strain	Marker	Origin/Reference
Gram-positive bacteria		
<i>Bacillus subtilis</i> ATCC 6633	Wild Type	American Type Culture Collection
Staphylococcus aureus SG511	Wild Type	Hans Knöll Institute, Jena, Germany
<i>Mycobacterium vaccae</i> IMET 10670	Wild Type	Hans Knöll Institute, Jena, Germany
<i>Mycobacterium smegmatis</i> mc ² 155	Wild Type	Snapper et al. 1990 ⁴
<i>Micrococcus luteus</i> ATCC 10240	Wild Type	American Type Culture Collection
Gram-negative bacteria		
Pseudomonas aeruginosa KW799/WT	Wild Type	Zimmermann 1980 ⁵
Pseudomonas aeruginosa KW799/61	Antibiotic Susceptible Penetration Mutant	Zimmermann 1980 ⁵
<i>Escherichia coli</i> X580	β-Lactam Hypersensitive	Eli Lilly & Co.

Table 4. Antibacterial activity of compounds in the agar diffusion assay

	Growth inhibition zones in mm (9 mm well diameter)												
	Gram-positiv	e bacteria	Gram-negative										
	B. subtilis	S. Aureus	M.smegmatis	M. vaccae	M. luteus	P. aeruginosa		E. coli					
compd ^a	6633 ATTC	SG511	MC155	10670 IMET	10240 ATTC	KW799/WT	K799/61	X580					
4	14	15	15P [°]	15	20	12	13	14					
12	18p ^b	19P	15ps	19	17	11	13	0					
13	12/14p	13/16P	17s	19	21	16	18p	15					
16	14P	18P	28s	17	26s	11	12	13P					
17	0	12	15ps	19	38s	15	0	17					
Cipro	26/30	-	18/27P	25	0	22	33	31					

^a 50 µL of a 2.0 mM solution in DMSO : MeOH (1 : 9) of each compound was filled in 9 mm wells in agar media (Standard I Nutrient Agar, Serva or Mueller Hinton II Agar, Becton, Dickinson and Company). Inhibition zones read after incubation at 37 °C for 24 h. Cipro (ciprofloxacin) was dissolved in H₂O to give a 5 mg/mL solution. ^b p, partially clear inhibition zone/colonies in the inhibition zone. ^c P, unclear inhibition zone/many colonies in the inhibition zone.

4				12				13			
Substructural unit	δ _C [ppm]	_{бн} [ppm]	Proton multiplicity ^a J(H _i ,H _j) [Hz]	Substructural unit	δ _C [ppm]	_{δн} [ppm]	Proton multiplicity ^a J(H _i ,H _j) [Hz]	Substructural unit	δ _C [ppm]	_{бн} [ppm]	Proton multiplicity ^a J(H _i ,H _j) [Hz]
C-1	170.7			CH ₂ -1	61.6	3.68	t, 5.8	CH ₂ -1	61.5	3.68	t, 5.8
C-2	120.1			CH ₂ -2	43.3	3.47	t, 5.8	CH ₂ -2	43.1	3.47	t, 5.8
CH-3	148.4	8.57	dd, 0.7, 2.4	C-3	169.0			C-3	168.5		
C-4	165.3			C-4	120.9			C-4	120.6		
CH-5	108.1	7.10	dd, 2.4, 9.0	CH-5	148.5	8.60	dd, 2.5, 0.7	CH-5	147.9	8.55	d, 2.2
CH-6	138.3	8.01	dd, 0.7, 9.0	C-6	165.3			C-6	165.3		
CH-7	68.5	4.50	dd, 4.7, 12.6	CH-7	108.4	7.04	dd	CH-7	107.8	7.10	d, 9.0
	24.0	2.41	mt, ΣJ=43.4	CH-8	137.5	7.96	dd, 8.9	CH-8	137.6	7.99	d, 9.0
012-0	24.0	1.58	mt	CH-9	62.5	5.14	dd, 3.8, 11.9	CH-9	68.6	4.49	dd, 4.7, 12.6
		1.48	mt, ΣJ=20.4			2.30	mt, ΣJ=34.0			1.57	mt
CH2-9	40.2	1.35	ddd 4.2, 13.1, 13.2	CH ₂ -10	30.5	1.60	mt	CH ₂ -10	23.6	2.40	mt, ΣJ=35.5
C-10	33.9			CH, 11	24.2	2.39	qd, 13.6, 4.8	CH, 11	20.0	1.34	mt
CU 11	E1 C	1.94	dd, 3.0, 13.3	0112-11	54.2	1.90	mt	012-11	55.5	1.47	mt
GH2-11	01.0	1.26	d, 13.2	C-12	153.6			C-12	33.6		
C-12	77.9			CH-13	47.5	2.34	mt, ΣJ=20.6			1.26	d, 13.4
CH ₂₋ 13	37.6	2.28	ddd, 4.1, 7.5, 13.9	CH-14	55.9	1.83	mt	CH ₂ -13	51.4	1.94	dd, 2.9, 13.4
0112-13	37.0	1.37	mt	CH2-15	34.1	1.77	dtd, 14.0, 4.2, 1.0	C-14	77.6		
CH14	24.2	1.59	mt	0112-13	54.1	1.47	mt	CH-15	37 3	1.38	ddd, 4.5, 9.2, 14.4
	L7.L	1.50	ddd, 3.9, 9.1, 9.3	CH2-16	38.2	2.35	dt, 13.6, 4.8		07.0	2.29	ddd, 3.9, 7.7, 14.4
CH-15	48.2	1.71	ddd, 5.5, 8.7, 12.2		00.2	1.88	mt	CH ₂ -16	23.9	1.51	mt

Table 5. ¹H and ¹³C NMR data for compounds 4, 12, 13 in CD_3OD at 298 K.

CH-16	41.61	2.12	ddd, 8.0, 11.1, 11.4	C-17	147.26					1.59	mt, ΣJ=27.0
		1.54	dd, 7.9, 9.6			1.82	mt	CH-17	47.9	1.71	mt, ΣJ=26.2
CH ₂ -17	37.4	1.40	mt	CH ₂ -18	37.8	1.61	mt	CH-18	41.3	2.12	ddd, 8.0, 10.8, 11.2
C-18	35.5			C-19	33.8			CH19	37.2	1.40	t, 8.1
CH ₃ -19	30.9	1.01	S	CH ₃ -20	22.0	1.00	S		07.2	1.54	dd, 8.1, 9.6
CH ₃ -20	21.0	1.03	S	CH ₃ -21	30.0	1.02	S	C-20	36.2		
CH ₃ -21	27.0	0.87	S	CH-22	100.0	4.98	mt	CH ₃ -21	30.6	1.01	S
				0112-22	103.3	4.87	t, 1.3	CH ₃ -22	20.7	1.03	S
				CH23	115.5	5.10	d, 2.0	CH ₃ -23	26.8	0.86	S
				UH2-23 115.5	115.5	5.09	d, 2.0				

a) Due to overlap of several proton signals the values of coupling constants or ΣJ could not be always determined.

		16 ^a				17	
Substructural	δς	δ _H	Proton multiplicity ^b	Substructural	δc	δ _H	Proton multiplicity ^b
unit	[ppm]	[ppm]	J(H _i ,H _j) [Hz]	unit	[ppm]	[ppm]	J(H _i ,H _j) [Hz]
CH ₂ -1	61.5	3.610	t, 5.5	CH2-1	61.3	3.70	t, 5.9
CH2-2	43.1	3.425	t, 5.5	CH ₂ -2	43.2	3.49	t, 5.9
C-3	167.9			C-3	169.9		
C-4	134.9			C-4	134.9		
CH-5,9	127.9	7.780	d, 8.3	CH-5,9	128.2	7.82	d, 8.4
CH-6,8	128.2	7.422	d, 8.3	CH-6,8	128.3	7.50	d, 8.4
C-7	140.8			C-7	141.7		
NH		7.233	t, 5.3	CH ₂ -10	67.5	5.23	d, 13.1
CH, 10	67.1	5.583	d, 13.1	0112-10	07.5	5.20	d, 13.1
012-10	07.1	5.092	d, 13.1	C-11	159.0		
C-11	157.3			CH-12	67.5	4.02	dd, 13.1
CH-12	61.8	4.715	bs	CH, 12	24.4	2.32	qd, 13.5, 4.4
CH- 12	24.1	2.340	mt	0112-13	24.4	1.57	mt
UH2-13	24.1	1.679	mt	CH- 14	20.7	1.47	mt
CH ₂₋ 14	38.5	1.473	mt	0112-14	39.7	1.32	mt
012-14	30.5	1.423	mt	C-15	33.7		
C-15	34.1			CH ₂₋ 16	51.0	1.86	dd, 2.9, 13.4
CH-16	11.6	2.351	mt	0112-10	51.0	1.16	d, 13.4
0112-10	44.0	1.952	mt	C-17	77.0		
C-17	97.4			CH18	36.7	2.23	ddd, 3.8, 8.1, 14.3
CH-18	33.0	2.357	mt	0112-10	50.7	1.34	mt
0112-10	00.0	1.824	mt	CH, 10	00 G	1.56	mt
CH ₂ -19	23.6	1.688	mt	002-19	23.0	1.44	mt
012-13	20.0	1.444	mt	CH-20	47.7	1.69	ddd, 5.7, 8.5, 12.1
CH-20	46.8	1.74	ddd, 5.2, 9.1,12.0	CH-21	41.1	2.07	ddd, 8.0, 10.8, 11.8
CH-21	40.7	2.019	ddd, 8.1, 10.9, 11.1	CH ₂ -22	37.1	1.52	dd, 8.0, 9.6

Table 6. ¹H and ¹³C NMR data for compounds **16** and **17** in CD₃OD at 298 K.

CH-22	36.64	1.518	dd, 8.1, 9.5			1.37	dd, 9.6, 10.6
0112-22	30.04	1.387	t, 10.0	C-23	35.3		
C-23	34.8			CH3-24	30.6	0.99	S
CH3-24	30.3	0.993	S	CH3-25	20.7	1.00	S
CH₃-25	20.6	0.996	S	CH3-26	26.7	0.84	S
CH ₃ -26	26.5	0.867	S				

a) In CD₃CN

b) Due to overlap of several proton signals the values of coupling constants or ΣJ could not be always determined.

¹H spectrum of **4** in CD₃OD at 25° C.

 ^{13}C APT spectrum of **4** in CD₃OD at 25° C.

2D DQF-COSY spectrum of **4** in CD₃OD at 25° C. The black and red contours represent positive and negative peaks, respectively.

2D TOCSY spectrum of **4** in CD₃OD at 25° C.

2D ¹³C-HSQC spectrum of **4** in CD₃OD at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively. The black cross-peaks correspond to CH₃ and CH groups, the red cross-peaks correspond to CH₂ groups.

2D ¹³C-HSQC-TOCSY spectrum of **4** in CD₃OD at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively.

2D ¹³C-HMBC spectrum of **4** in CD₃OD at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively. The insert in the upper left corner represents an expansion of the high field region plotted with reduced cross-peaks intensities for a better clarity.

Correlation diagram for compound **4**. The HMBC correlations (in blue), together with proton-proton correlations in DQF-COSY and TOCSY spectra and one bond proton-carbon correlations in the HSQC spectrum unambiguously establish the proposed structure of compound **4**.

¹H spectrum of **12** in CD₃OD at 25° C.

S19

2D DQF-COSY spectrum of **12** in CD₃OD at 25° C. The black and red contours represent positive and negative peaks, respectively.

2D TOCSY spectrum of **12** in CD₃OD at 25° C.

S21

 $2D^{13}C$ -HSQC spectrum of **12** in CD₃OD at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively. The black cross-peaks correspond to CH₃ and CH groups, the red cross-peaks correspond to CH₂ groups.

2D ¹³C-HSQC-TOCSY spectrum of **12** in CD₃OD at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively.

 $2D^{13}C$ -HMBC spectrum of **12** in CD₃OD at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively. The insert in the upper left corner represents an expansion of the high field region plotted with reduced cross-peaks intensities for a better clarity.

¹H spectrum of **13** in CD₃OD at 25° C.

2D DQF-COSY spectrum of **13** in CD₃OD at 25° C. The black and red contours represent positive and negative peaks, respectively.

2D TOCSY spectrum of **13** in CD₃OD at 25° C.

 $2D^{13}C$ -HSQC spectrum of **13** in CD₃OD at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively. The black cross-peaks correspond to CH₃ and CH groups, the red cross-peaks correspond to CH₂ groups.

2D ¹³C-HSQC-TOCSY spectrum of **13** in CD₃OD at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively.

 $2D^{13}C$ -HMBC spectrum of **13** in CD₃OD at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively. The insert in the upper left corner represents an expansion of the high field region plotted with reduced cross-peaks intensities for a better clarity.

¹H spectrum of **16** in CD₃CN at 25° C.

Compound 16

2D DQF-COSY spectrum of **16** in CD₃CN at 25° C. The black and red contours represent positive and negative peaks, respectively.

2D TOCSY spectrum of **16** in CD₃CN at 25° C.

2D ¹³C-HSQC spectrum of **16** in CD₃CN at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively. The black cross-peaks correspond to CH₃ and CH groups, the red cross-peaks correspond to CH₂ groups.

2D ¹³C-HSQC-TOCSY spectrum of **16** in CD₃CN at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively.

2D ¹³C-HMBC spectrum of **16** in CD₃CN at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively. The insert in the upper left corner represents an expansion of the high field region plotted with reduced cross-peaks intensities for a better clarity.

¹H spectrum of **17** in CD₃OD at 25° C.

2D DQF-COSY spectrum of **17** in CD₃OD at 25° C. The black and red contours represent positive and negative peaks, respectively.

2D TOCSY spectrum of **17** in CD₃OD at 25° C. The insert in the upper left corner represents an expansion of the high field region plotted with reduced cross-peaks intensities for a better clarity.

 $2D^{13}C$ -HSQC spectrum of **17** in CD₃OD at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively. The black cross-peaks correspond to CH₃ and CH groups, the red cross-peaks correspond to CH₂ groups.

2D ¹³C-HSQC-TOCSY spectrum of **17** in CD₃OD at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively.

2D ¹³C-HMBC spectrum of **17** in CD₃OD at 25° C. The horizontal and vertical axes display ¹H and ¹³C chemical shifts, respectively. The insert in the upper left corner represents an expansion of the high field region plotted with reduced cross-peaks intensities for a better clarity.

Correlation diagram for compound **17.** The HMBC (in blue) and NOE (in red) correlations, together with proton-proton correlations in the DQF-COSY and TOCSY spectra and one bond proton-carbon correlations in the HSQC spectrum unambiguously establish the proposed structure of compound **17** and conformation of its β -caryophyllene unit (segment).

References and Notes

1. For a detailed account of this antibiotic susceptibility assay see: Afonin, S.; Glaser, R. W.; Berditchevskaja, M.; Wadhwani, P.; Gührs, K.-H.; Möllmann, U.; Perner, A.; Ulrich, A. S. "4-Fluoro-phenylglycine as a Label for ¹⁹F-NMR Structure Analysis of Membrane Associated Peptides." *ChemBioChem* **2003**, *4*, 1151-1163.

2. Murray, P. R.; Baron, E. J.; Pfaller, M. A.; Tenover, F. C.; Yolken, R. H. *Manual of Clinical Microbiology*, 7th ed.; American Society for Microbiology: Washington, DC, **1999**.

3. The test organisms *Mycobacterium vaccae* IMET 10670 and *Mycobacterium smegmatis* mc²155 required longer incubation times for overnight LB cultures (24-48 hours) and were used in the agar diffusion assay directly from the LB culture broth without dilution and standardization. The test organism *Bacillus subtilis* ATCC 6633 was used in the agar diffusion assay directly from the LB culture broth without dilution and standardization.

4. Snapper, S. B.; Melton, R. E.; Mustafa, S.; Kieser, T.; Jacobs, W. R. "Isolation and Characterization of Efficient Plasmid Transformation Mutants of *Mycobacterium smegmatis*." *Mol. Microbiol.* **1990**, *4*, 1911-1919.

5. Zimmermann, W. "Penetration of β-Lactam Antibiotics into their Target Enzymes in *Pseudomonas aeruginosa*: Comparison of a Highly Sensitive Mutant with its Parent Strain." *Antimicrob. Agents Chemother.* **1980**, *18*, 94-100.