Suppl. Table 1. List of sequences used in this study with GenBank or NtGI EST accession numbers.

Acc No/Protein/Corresponding	Organism	Predicted protein length in aa		
gene				
p62/NBR1/Joka2				
NP_194200	Arabidopsis thaliana	704		
XP_661032	Aspergillus nidulans	1524		
NP_788814	Bos taurus	440		
AAI49980	Bos taurus	986		
NP 502280.2	Caenorabditis elegans	693		
NP 501086	Caenorabditis elegans	498		
AAI41800	Danio rerio	992		
XP 001920616	Danio rerio	625		
AAF53824	Drosophila melanogaster	599		
XP 418128	Gallus gallus	956		
XP_001233249	Gallus gallus	376		
NP_003891	Homo sapiens	440		
NP_005890	Homo sapiens	966		
XP_001102347	Macaca mulatta	439		
XP_001097043	Macaca mulatta	965		
NP_035148	Mus musculus	442		
NP_032702	Mus musculus	988		
HQ025921	Nicotiana tabacum	843		
NP 001047302	Oryza sativa	845		
XP 518154	Pan troglodytes	440		
XP_001155220	Pan troglodytes	895		
XP_001765979	Physcomytrella patents	732		
NP 001125548	Pongo abelii	440		
NP_001127309	Pongo abelii	894		
XP_002321635	Populus trichocarpa	673		
NP 787037	Rattus norvegicus	439		
NP_001019936	Rattus norvegicus	983		
XP_002511320	Ricinus communis	754		
XP_002454107	Sorgum bicolor	849		
ABB18390	Triticum aestivum	870		
XP_002277480	Vitis vinifera	910		
ACN33320	Zea mays	842		
ATG8/UBL family				
AAP21330.1/ATG8a/At4g21980	Arabidopsis thaliana	122		
NP_849298/ATG8b/At4g04620	Arabidopsis thaliana	122		
NP_176395/ATG8c/At1g62040	Arabidopsis thaliana	119		
AAO23655.1/ATG8d/At2g05630	Arabidopsis thaliana	120		
NP_850431/ATG8e/At2g45170	Arabidopsis thaliana	122		
NP_849395.1/ATG8f/At4g16520	Arabidopsis thaliana	121		
NP_191623/ATG8g/At3g60640	Arabidopsis thaliana	121		
NP_566283/ATG8h/At3g06420	Arabidopsis thaliana	119		
ABD38893/ATG8i/At3g15580	Arabidopsis thaliana	115		
TC107227/NtATG8f	Nicotiana tabacum	122		
TC99613	Nicotiana tabacum	120		
TC105161	Nicotiana tabacum	125		
TC115968	Nicotiana tabacum	117		
TC89388	Nicotiana tabacum	122		
TC93678	Nicotiana tabacum	118		
TC92507	Nicotiana tabacum	126		
TC96782	Nicotiana tabacum	122		
TC96352	Nicotiana tabacum	122		

TC95560	Nicotiana tabacum	126		
TC115354	Nicotiana tabacum	125		
AM841450	Nicotiana tabacum	117		
FG635310	Nicotiana tabacum	118		
TC92677	Nicotiana tabacum	127		
TC95557	Nicotiana tabacum	119		
UP9/LSU-like family				
DQ444223/UP9A	Nicotiana tabacum	117		
AY547446/UP9C	Nicotiana tabacum	117		
NP_190527/LSU1/At3g49580	Arabidopsis thaliana	94		
NP_197854/LSU2/At5g24660	Arabidopsis thaliana	94		
NP_190526LSU3/At3g49570	Arabidopsis thaliana	97		
NP_568450/LSU4/At5g24655	Arabidopsis thaliana	92		
Protein partners of UP9C described in this study				
DQ444220/Joka2	Nicotiana plumbaginifolia	467 (incomplete orf)		
DQ444222/Joka8	Nicotiana plumbaginifolia	360 (incomplete orf)		
DQ444221/Joka20	Nicotiana plumbaginifolia	161 (incomplete orf)		

Name	Source/Reference/Description
Vectors	
pDEST22	Invitrogen, PO10001-01
pDEST32	Invitrogen, PO10001-01
pK7CWG2	Karimi et al. ⁸¹
pH7YWG2	Karimi et al. ⁸¹
pH7WGC2	Karimi et al. ⁸¹
pDONR221	Invitrogen, 12536017
pENTR-D TOPO	Invitrogen, K2400
pGEX4T-1	GE Healthcare Bio-Sciences AB,28-9545-49
pGBT9	GenBank Acc # U07646
pGAD424	GenBank Acc # U07647
pGAD10	GenBank Acc # U13188
pET28a	Novagen, 69864-3
pDEST15	Invitrogen, 11802-014
cDNA constructs ma	ide by traditional cloning
pJoka2	Joka2 from <i>N. plumbaginifolia</i> (NpJoka2) in pGAD10
pJoka8	Joka8 from <i>N. plumbaginifolia</i> (NpJoka8)in pGAD10
pJoka20	Joka20 from <i>N. plumbaginifolia</i> (NpJoka20) in pGAD10
pJK1	UP9C from <i>N. tabacum</i> in pGBT9
pJK2	UP9C from <i>N. tabacum</i> in pGAD424
pLSU1	At3g49580 from <i>A</i> thaliana in pGBT9
pLSU2	At5g24660 from <i>A. thaliana</i> in pGBT9
pLSU3	At3g49570 from <i>A</i> thaliana in pGBT9
pLSU4	At5g24655 from <i>A</i> thaliana in pGBT9
pJK11	NpJoka2 in pGBT9: ORF length as in pJoka2
pHis-UP9C	UP9C from <i>N. tabacum</i> in pET28a
pGST-PB1	0.7 kb EcoRI-EcoRI fragment from pJoka2 (1-684bp/1-228 aa) in pGEX4T-1
pGST-ZZ	0.74 kb EcoRI-EcoRI fragment from pJoka2 (685-1403bp/229-467 aa) in pGFX4T-1
nGST-Joka8	1 12 kh EcoRI Fragment from nIoka8 in nGEX/T-1
pGST-Joka20	0.65 kh EcoRI-EcoRI fragment from ploka0 in pGEX4T-1
pGG1 JORa20	ATG8f from <i>N</i> tabacum in pFT28a
cDNA constructs ma	ide by traditional cloning into entry vector
nEntrPB1	PB1 domain (1-1266 hp/1-422 aa) from NtIoka2 in pENTR
pEntrPB1ZZ	PB1ZZ domain (1-2253 bp/1-751 aa) from NtIoka2 in pENTR
pEntrZZ	ZZ domain (316-2253 bp/106-751 aa) from NtJoka2 in pENTR
pEntrZZUBA	ZZUBA domain (316-2526 hp/106-842 aa) from Nt Joka2 in pENTR
pEntrATG8f	NtATG8f cDNA in pENTR
cDNA constructs ma	ide by Gateway BP reaction
pEntrI	full -length Nt Joka2 in pDONR221
pEntrB	UP9C in nDONR221
cDNA constructs ma	ide by Gateway LR reaction
nI4	full-length Nt Joka2 from pEntrL in pH7YWG2
nI5	full-length Nt Joka2 from pEntrI in pK7CWG2
pATG8f	full-length NtATG8f from pEntrATG8f in pH7WGC2
pDEST22/PB1	PB1 domain (1-1266bp/1-422aa) of NtJoka2 from pEntrPB1 in
nDEST32/PR1	PB1 domain (1-1266hn/1-422aa) of NtIoka2 from nEntrPB1 in
PDE0152/FDI	pDEST32

Suppl. Table 2. List of the plasmids used in this study.

pDEST22/PB1ZZ	PB1-ZZ domains (1-2253bp/1-751aa) of NtJoka2 from pEntrPB1ZZ in pDEST22
pDEST32/PB1ZZ	PB1-ZZ domains (1-2253bp/1-751aa) of NtJoka2 from pEntrPB1ZZ in pDEST32
pDEST22/ZZ	ZZ domain (316-2253bp/106-751aa) of NtJoka2 from pEntrZZ in pDEST22
pDEST32/ZZ	ZZ domain (316-2253bp/106-751aa) of NtJoka2 from pEntrZZ in pDEST32
pDEST22/ZZUBA	ZZ-UBA domains (316-2526bp/106-842aa) of NtJoka2 from pEntrZZUBA in pDEST22
pDEST32/ZZUBA	ZZ-UBA domains (316-2526bp/106-842 aa) of NtJoka2 from pEntrZZUBA in pDEST32
pDEST22/ATG8f	full-length ATG8f from pEntrATG8f in pDEST22
pDEST32/ATG8f	full-length ATG8f from pEntrATG8f in pDEST32
pDEST22/UP9	full-length UP9C from pEntrUP9 in pDEST22
pDEST32/UP9	full-length UP9C from pEntrUP9 in pDEST32
pDEST15/Joka2	full -length NtJoka2 in pDEST15

Suppl. Table 3. List of the oligonucleotides used as forward (F) and reverse (R) primers. All primers are shown from 5' to 3'.

Cloning by Gateway technology (start and stop codons are underlined)			
F: caccatggctatggagtctgct	used to amplify PB1		
R: aatagtcccagtcccatcactg	region of NtJoka2		
F: caccatgtctactcccttacgatc	used to amplify ZZ		
R: ctggggtggtgcctgcg	region of <i>NtJoka2</i>		
F: caccatggctatggagtctgct	used to amplifyPB1-ZZ		
R: ctggggtggtgcctgcg	region of NtJoka2		
F: caccatgtctactcccttacgatc	used to amplify ZZ-		
R: ctctccagcaataagatccatg	UBA region of NtJoka2		
F: caccatggcaaagagttcattc	used to amplify		
R: ccatgaaagttacaccaagttg	NtATG8f		
F: ggggacaagtttgtacaaaaaagcaggctcaatggctatggagtctgctat			
R: ggggaccactttgtacaagaaagctgggtcctgctctccagcaataagatc	used to amplify NtJoka2		
F: ggggacaagtttgtacaaaaaagcaggctca <u>atg</u> ttttcgacaattgctgt			
R: ggggaccactttgtacaagaaagctgggtcttgggaactgggaacggtaa	used to amplify UP9C		
PT DCD			
K1-1 CK			
P. colocidalgolaticico	$T_{ac0}(GB\# X69885)$		
K. agageteestattttagaesattaat	IIPOC/IIPOA (primers)		
P. cgggalccalglilicgacaaligei	amplify both genes)		
K. gedagetigglaceteaugggadetgggade	ampiny both genes)		
P. gentagetagetagetage	Nt Joka?		
K. ggggccigcgiaiciaca	NijOku2		
P: cataggagttaggagttag	Nt ATG8f		
	Матобу		
Other primers used in this work (restriction enzyme sites are underlined)			
	used to sequence inserts		
	in pDEST22 or		
R: agecgacaacettgattggagae	pDEST32		
	used for 5'RACE-PCR		
R1: caggcatctagcgcatcatccaca	to amplify 5'-end of		
R2: tcattcagggctgtgtggggctcgt	NtJoka2		
	used for 3'RACE-PCR		
F1: atgtggatgatgcgctagatgcctg	to amplify 3'-end of		
F2: atgatgcagggagaacggctaaagct	NtJoka2		
F: cggaattcttttcgacaattgctgtgc	used for cloning UP9C		
R: gc <u>etgcag</u> agcgtcaaactccattaccc	into pJK1 and JK2		
F: cggaattcgcgaaccgaggaggatgc	used for cloning LSU1		
R: cgctgcagctacgaggaagagacgacagaa	into pGAD and pGBT		
F: cgggatccatgttttcgacaattgct	used for cloning UP9C		
R: gcaagettggtacetcattgggaactgggaac	into pET28a		
F: A <u>GGATCC</u> ATGGCAAAGAGTTCATTC	used for cloning ATG8f		
r: GGAATTCGAAAGTTACACCAAGTTG	into pET28a		

А

В

	~ ~		AD	BD	growth	
	4 🔘 🖲 🖉	1.	Strong positi	ve control	+	
		2.	Weak positiv	e control	+	
	5	3.	Negative cor	htrol	-	
	3	4.	PB1	UP9C	-	
		5.	PB1ZZ	UP9C	+	
	6 11	6.	ZZ	UP9C	+	
		7.	ZZUBA	UP9C	+	
0		8.	Joka2	UP9C	+	
	7 12	9.	UP9C	PB1	-	
		10.	UP9C	PB1ZZ	+	
		11.	UP9C	ZZ	+	
	8 13	12.	UP9C	ZZUBA	+	
D-LTH		13.	UP9C	Joka2	+	

10dps

24dps

- Supplementary Figure 1. Mapping of the UP9C interaction to the ZZ domain of NtJoka2. The yeast colonies along with descriptions (A) and the schemes of the constructs used for the experiment (B) are shown. All constructs contain *NtJoka2* cDNA from *Nicotiana tabacum*, except 2b, which contains *NpJoka2* cDNA from *Nicotiana plumbaginifolia*. The proof for UP9C interaction with the 2b fragment comes from the pool down experiment (see Fig. 1B).
- **Supplementary Figure 2**. Localization of Joka2-YFP in roots elongation zone of tobacco seedlings grown for 10 days in the indicated conditions (-S, sulfur starvation; -N, nitrogen starvation; nS, nutrient sufficient medium and water). The signal for Joka2-YFP, DNA staining with DAPI and overlays of both with the transparent view image are shown. The scale bars (10 μM) are indicated.
- **Supplementary Figure 3.** Localization of Joka2-YFP in roots elongation zone of tobacco seedlings grown for 17 days in the indicated conditions (-S, sulfur starvation; -N, nitrogen starvation; nS, nutrient sufficient medium and water). The signal for Joka2-YFP, DNA staining with DAPI and overlays of both with the transparent view image are shown. The scale bars (10 μM) are indicated.
- **Supplementary Figure 4.** Localization of Joka2-YFP in roots elongation zone of tobacco seedlings grown for 24 days in the indicated conditions (-S, sulfur starvation; -N, nitrogen starvation; nS, nutrient sufficient medium and water). The signal for Joka2-YFP, DNA staining with DAPI and overlays of both with the transparent view image are shown. The scale bars (10 μM) are indicated.
- **Supplementary Figure 5.** Localization of Joka2-YFP in the indicated parts of tobacco seedlings grown for 10 days in water. The signal for Joka2-YFP, DNA staining with DAPI,chlorophyll (if present) and overlays of all with the transparent view image are shown. The right-hand panels are the magnification of the indicated parts. The scale bars (100 μM) are indicated.