Supporting Information

Physically Associated Synthetic Hydrogels with Long-Term Covalent Stabilization for Cell Culture and Stem Cell Transplantation

Jianjun Zhang^{1,4}, Talar Tokatlian¹, Jin Zhong², Quinn KT Ng¹, Michaela Patterson³, Bill Lowry³, S. Thomas Carmichael², Tatiana Segura¹ *

¹Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.

²Department of Neurology, University of California, Los Angeles, CA 90095, USA.

³Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.

⁴Beijing University of Chemical Technology, Beijing 100029, PR China (current location).

[*] Prof. Tatiana Segura. Corresponding-Author

¹ Department of Chemical and Biomolecular Engineering, University of California,

Los Angeles, Los Angeles, CA 90095, USA E-mail: <u>tsegura@ucla.edu</u>

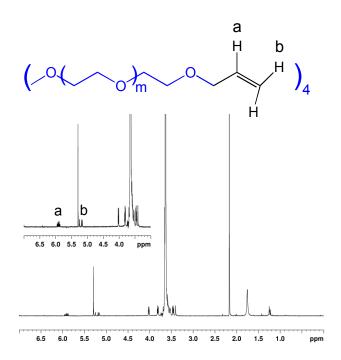
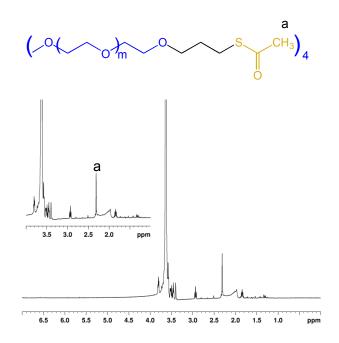
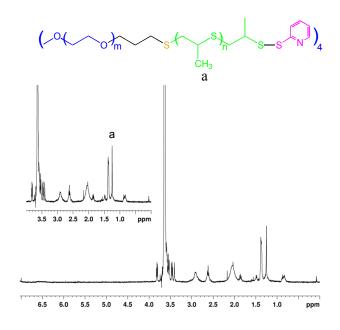
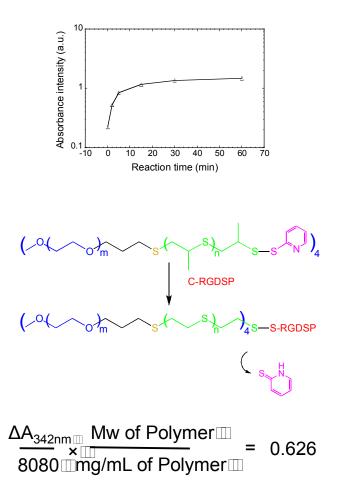


Figure S1. ¹H NMR spectra of PEG-allyl ether using CDCl₃ as solvent. δ =3.39-3.89 (broad, PEG chain protons), 5.85-5.98 (m, 1H, -CH₂OCH₂CH=CH₂), 5.15-5.30 (m, 2H, -CH₂OCH₂CH=CH₂).


Figure S2. ¹H NMR spectra of PEG-thioacetate using CDCl₃ as solvent. δ =1.81-1.9 (q, 2H, -OCH₂CH₂CH₂S-), 2.35 (s, 3H, -SCOCH₃), 2.92-2.97 (t, 2H, -

OCH₂CH₂CH₂S-), 3.39-3.89 (broad, PEG chain protons).

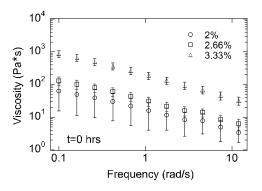


Figure S3. ¹H NMR spectra of PEG-PPS (i.e. $(PEG_{113}-PPS_5)_4$) using CDCl₃ as solvent. δ =1.35-1.45 (d, CH3 in PPS chain), 1.81-1.9 (broad q, 2H, -OCH₂CH₂CH₂CH₂S), 3.6-3.7 (broad PEG chain protons).

Note: Depending on the moles of polypropylene sulfide monomer used, PEG arms were modified with 5 or 8 PPS (i.e. $(PEG_{113}-PPS_5)_4$ or $(PEG_{113}-PPS_8)_4$, respectively). However, since the solubility of $(PEG_{113}-PPS_8)_4$ was extremely low and could not be used to consistently form homogeneous bulk hydrogels.

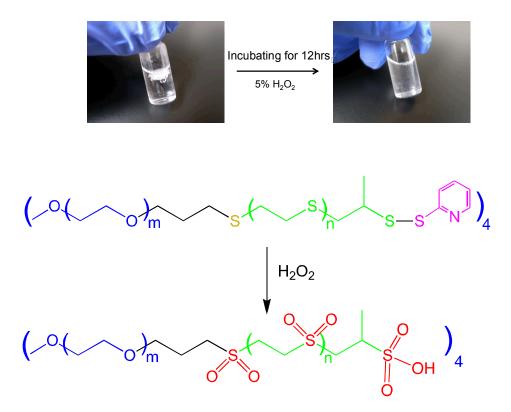
Figure S4. The degree of modification of RGD onto PEG-PPS was monitored by the release of 2-pyridine dithione (absorbance at 342nm), and calculated using the above formulation. The reaction reached a plateau after 1 hour and the coupling efficiency of RGD on four-arm PEG-PPS was ~15%.

Figure S5. The viscosity of (PEG₁₁₃-PPS₅)₄ hydrogels was obtained as a function of shear rate using a strain-controlled Physica MCR Anton Paar rheometer. Although increasing copolymer concentration was found to increase the viscosity, viscosity decreased with increasing shear rate for all copolymer concentrations, indicating a shear-thinning fluid.

Table S1. Network structure parameter of PEG-PPS hydrogels with incubated in

PEG-PPS	G (Pa)	$v_0 \pmod{/\text{m}^3}$	Mc $(10^4 \text{g} / \text{mol})$	
2%-0h	17.28	0.0069	289.85	
2%-336h	701.73	0.2833	7.06	
2.66%-0h	30.25	0.0122	218.03	
2.66%-12h	206.45	0.0833	31.93	
2.66%-72h	572.73	0.2312	11.50	
2.66%-168h	789.45	0.3187	8.34	
2.66%-336h	989.64	0.3995	6.65	
3.33%-0h	193.28	0.0780	42.69	
3.33%-336h	1492.70	0.6026	5.5260	
Faultion 1				

cDMEM in the presence of cells for various time.


Equation 1

 $Mc(g/mol) = \frac{\rho(g/m^3)}{\upsilon_0(mol/m^3)}$

Equation 2

$$\upsilon_{0}(mol/m^{3}) = \frac{G(Pa)}{k(J/K) * NA(/mol) * T(K)}$$

$$\upsilon_{0}(mol/m^{3}) = \frac{G(Pa)}{1.38 * 10^{-23} (J/K) * 6.02 * 10^{23} (/mol) * 298.15(K)}$$

$$= \frac{G(N/m^{2})}{1.38 * 10^{-23} (N * m/K) * 6.02 * 10^{23} (/mol) * 298.15(K)}$$

From dynamic shear rheology of data taken in the plateau temperature regime, an equilibrium modulus can be determined. Through the theory of rubber elasticity a average molecular weight between cross-linking points can be determined by using equation 1 and 2. Here, Mc is the average molecular weight between cross-linking points, ρ is the polymer densities in the hydrogel, v_0 is the effective network chain density, G is the equilibrium modulus (in the calculation, we used average storage modulus G' as the equilibrium modulus), k is Boltzmann constant, N_A is Avogadro's number.

Figure S6. 2.66% (PEG₁₁₃-PPS₅)₄ hydrogels previously incubated in PBS for 336 hours were treated with hydrogen peroxide (H_2O_2). The hydrogels degraded completely in 12 hours. Oxidation resulted in hydrophilic sulfones which were not able to self assemble.