Three-Component Reaction Discovery Enabled by Mass Spectrometry of Self-Assembled Monolayers

Timothy J. Montavon, Jing Li, Jaime R. Cabrera-Pardo, Milan Mrksich* and Sergey A. Kozmin*

Chicago Tri-Institutional Center for Chemical Methods and Library Development Department of Chemistry, University of Chicago, Chicago, IL 60637

Supplementary Information

1. SAMDI Reaction Screening	S2
Mass Spectrometry Data from SAMDI Screens	
Materials for SAMDI Screening	S3
2. Three Component Reaction Scope Studies	S3
General Procedures for Organic Synthesis	S3
Preparation of Siloxy Alkynes	S4
Synthesis and Characterization of Three-Component Products	S5
3. New Phosphine-Catalyzed Reactions	S15
Procedure for Acylation of Amines	S15
Procedure for the Acylation of 2,6-Diisopropylphenol	S16
Procedure for the Acylation of Diethyl Malonate	S16
4. Library Synthesis and Characterization	S17
General Procedure for the Synthesis of Library Compound	S17
Purity Reports for All Library Compounds	S19
Characterization of Randomly Selected Library Members	S54
5. Additional Product Characterization	S55
X-Ray Structure Determination of 5	S55
NMR Spectra of New Compounds	S60

1. SAMDI Reaction Screening

Mass Spectrometry Data from SAMDI Screens

Supplementary Figure S1. Representative MALDI MS data of the three-component reaction screen. A: MALDI MS spectrum of the aldehyde-terminated monolayer, which was treated with 1-siloxy-1-hexyne (2) and 4-methoxy-

N-methyl aniline (**3**) in tetrahydrofuran, shows a major peak at m/z 970.4. **B**: MALDI MS spectra of the aldehydeterminated monolayer after treatment with siloxy alkyne **2** and aniline **3** in the presence of several representative additives show major peaks at m/z 970.4, which is indicative of unreacted aldehyde. **C**: MALDI MS spectra of the aldehyde-terminated monolayer after treatment with siloxy alkyne **2** and aniline **3** in the presence of several additional additives shows disappearance of the peak at m/z 970.4 without formation of any new peaks. **D**. MALDI MS spectra of the aldehyde-terminated monolayer after treatment with siloxy alkyne **2** and aniline **3** in the presence of four catalysts, which resulted in formation of new major peaks. The peak at m/z 1135.4 (three spectra on the left) cannot be assigned at this point. The peaks at m/z 857.4 and 1205.6 (spectrum on the right) correspond to the sodium adduct of an alkanethiolate terminated in a three-component product following loss of the triisopropylsilyl (TIPS) group as well as the sodium adduct of a mixed disulfide produced from this three-component product and the background methylether-terminated alkanethiolate.

Materials for SAMDI Screening

Reagents and anhydrous solvents for SAMDI screening were used as received without further purification. Glass slides for gold deposition were obtained from Fisher Scientific. (Tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane was purchased from Pfaltz & Bauer (Waterbury, CT). Glove bags were purchased from Glas-Col (Terre Haute, IN). Amino-EG6-undecanethiol was purchased from Dojindo (Rockville, MD). The methyl ether-terminated alkanethiol with a tri(ethylene glycol) spacer was synthesized according to a previously reported procedure.¹

2. Three Component Reaction Scope Studies

General Procedures for Organic Synthesis

Hexanes (ACS grade), ethyl acetate (ACS grade), diethyl ether (ACS grade), and toluene (anhydrous) were purchased from Fisher Scientific and used without further purification. Tetrahydrofuran was distilled from sodium-benzophenone under a positive pressure of nitrogen. Unless otherwise noted, all reactions were performed under an inert atmosphere of nitrogen in flame-dried (10 x 75 mm) test tubes equipped with a stirbar and fitted with a rubber septum. Triisopropylsilyl trifluoromethanesulfonate (TIPSOTf) was distilled under reduced pressure over calcium hydride. 4-Methoxy-N-methylaniline was purified by flash chromatography prior to use (hexanes to 95:5 hexanes: EtOAc). Other commercially available reagents were obtained from Sigma-Aldrich, Strem, or Alfa Aesar Lancaster Synthesis and were used without further purification unless otherwise noted. Solution-phase reactions were monitored by thin layer chromatography (TLC) using Whatman precoated silica gel plates. Flash column chromatography was performed over Silacycle silica gel (230-400 mesh). ¹H NMR spectra were recorded on a Bruker DMX-500 instrument. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance resulting from incomplete deuteration as the internal standard (CH₃CN: δ 1.94 or CDCl₃: δ 7.26). ¹H NMR spectra for three-component products were recorded at elevated temperatures to ensure the appearance of all proton signals. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q =quartet, ddd = doublet of doublet of doublets, br = broad, m = multiplet), coupling constants in

¹ Yeo, W. S.; Mrksich, M. *Langmuir* **2006**, *22*, 10816-10820.

Hertz (Hz), and integration. ¹³C NMR spectra were recorded on a Bruker DMX-500 instrument using residual solvent peaks as internal standards (CH₃CN: δ 118.69 or CDCl₃ δ 77.23). High resolution mass spectra were recorded with a Waters Q-TOF Ultima tandem quandrupole/time-of-flight instrument.

Preparation of Siloxy Alkynes

((cyclopropylethynyl)oxy)triisopropylsilane (28).

A 500-mL flame-dried, three-necked, round-bottomed flask equipped with a stir bar, fitted with rubber septa and a nitrogen inlet was charged with THF (125 mL) and cyclopropylacetylene (3.22 mL, 38.0 mmol). The resulting solution was cooled to -78 °C and anhydrous t-BuOOH (7.23 mL of a 5.78 M solution in nonane, 41.8 mmol) was added dropwise over a period of 10 minutes. CAUTION! SOLUTIONS OF OXIDANTS AND OXIDIZABLE SUBSTRATES ARE POTENTIALLY HAZARDOUS AND POSSIBLY **SUBJECT** TO VIOLENT DECOMPOSITION BY ADVENTITIOUS CATALYSIS. Freshly prepared LiHMDS (95.0 mL of a 1M solution in THF, 95.0 mmol) was added to the resulting mixture via syringe pump over a period of 30 minutes. The mixture was allowed to warm to 0 °C in an ice water bath, and was stirred for 2 h at this temperature. The reaction mixture was then cooled to -78 °C, treated dropwise over a period of 10 min with TIPSOTf (11.23 mL, 41.8 mmol), and was allowed to stir for 5 min at this temperature. The reaction vessel was transferred to a 0 °C ice water bath and was allowed to stir for an additional 40 minutes before being diluted with hexanes (200 mL). The resulting mixture was transferred to a separatory funnel and was washed with saturated aqueous NaHCO₃ (150 mL). The organic layer was collected, and the aqueous layer was extracted with hexanes (2 x 50 mL). The combined organic layers were washed with saturated aqueous Na₂S₂O₃ (125 mL) and brine (100 mL). The organic layer was collected, dried with MgSO₄, filtered, and concentrated by rotary evaporation. The residue was purified by Kugelrohr distillation affording 28 as a clear oil (7.46 g, 31.3 mmol, 82 % yield). The synthesis and characterization of other siloxy alkynes used in this study has been previously reported.^{2,3,4,5} ¹H NMR (500 MHz, CDCl₃) δ 1.27-1.20 (m, 3H), 1.10 (d, J = 7.0 Hz, 18H), 1.05-1.03 (m, 1H), 0.62-0.58 (m, 2H), 0.46-0.42 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) 82.7, 34.3, 17.5, 12.0, 7.9, -1.4; HRMS (EI⁺) calculated for C₁₄H₂₇OSiF [M]⁺ 238.1753, found 238.1766.

² Schramm, M. P.; Shubinets, V.; Kozmin, S. A. Org. Synth. 2010, 87, 253-263.

³ Sun, J.; Keller, V. A.; Meyer, S. T.; Kozmin, S. A. Adv. Synth. Catal. 2010, 352, 839-842.

⁴ Sun, J.; Kozmin, S. A. Angew. Chem. Int. Ed. 2006, 45, 4991-4993.

⁵ Sweis, R.; Schramm, M. P.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 7442-7443.

Synthesis and Characterization of Three-Component Products

All three-component products were synthesized according to the general procedure detailed in the methods section of the manuscript. For the reaction of 4-trifluoromethylbenzaldehyde with siloxy alkyne **2** and aniline **3**, both diastereomers of the product were isolated and characterized. For all other three-component reactions, only the major, *anti*-diastereomers were fully characterized due to the difficulty of obtaining sufficient amounts of the purified minor diastereomers.

(RS)-2-((SR)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-N-(4-methoxyphenyl)-N-

methylhexanamide (*anti-5*). Following the standard procedure for three-component condensations, the reaction of 4-(trifluoromethyl)benzaldehyde (136.6 µl, 1.00 mmol) afforded *anti-5* as a white solid (178.2 mg, 0.435 mmol, 87% yield) after purification by flash chromatography (hexanes to 85:15 hexanes:EtOAc). Crystallization of **5** was performed using hexanes:EtOAc (50:50). mp: 130-132 °C; ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.65 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 6.83 (d, *J* = 8.5, 2H), 6.71-5.54 (m, 2H), 4.99 (d, *J* = 7.5 Hz, 1H), 4.71 (dd, *J* = 7.0, 5.0 Hz, 1H), 3.80 (s, 3H), 3.08 (s, 3H), 2.64-2.59 (m, 1H), 1.75-1.66 (m, 1H), 1.54-1.45 (m, 1H), 1.24-1.12 (m, 4H), 0.84 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 176.0, 160.3, 150.5, 137.3, 130.1 (q, *J* = 31.8 Hz), 130.1, 128.1, 126.5 (q, *J* = 3.8 Hz), 125.9 (q, *J* = 269.5 Hz), 115.7, 75.6, 56.6, 48.9, 37.9, 31.5, 30.4, 23.7, 14.5; HRMS (ESI) calculated for C₂₂H₂₇NO₃F₃ [M+H]⁺ 410.1943, found 410.1950.

(*RS*)-2-((*RS*)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-*N*-(4-methoxyphenyl)-*N*methylhexanamide (*syn*-6). Following the standard procedure for three-component condensations, the reaction of 4-(trifluoromethyl)benzaldehyde (136.6 μ l, 1.00 mmol) afforded *syn*-6 as a white solid (5.5 mg, 0.013 mmol, 3% yield) after purification by flash chromatography (hexanes to 85:15 hexanes:EtOAc) and preparative TLC (70:30 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.61 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 9.0 Hz, 2H), 6.86-6.78 (m, 2H), 4.93-4.89 (m, 1H), 4.10 (d, J = 2.5 Hz, 1H), 3.82 (s, 3H), 3.13 (s, 3H), 2.63-2.57 (m, 1H), 1.75-1.65 (m, 1H), 1.41-1.33 (m, 1H), 1.22-1.05 (m, 3H), 1.02-0.92 (m, 1H), 0.79 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) 175.8, 160.4, 149.1, 137.5, 130.2, 129.9 (q, J = 31.8 Hz), 128.0, 126.2 (q, J = 3.8 Hz), 125.9 (q, J = 269.4 Hz), 115.9, 74.7, 56.6, 50.0, 38.0, 30.7, 28.5, 23.9, 14.5; HRMS (ESI) calculated for C₂₂H₂₇NO₃F₃ [M+H]⁺ 410.1943, found 410.1946.

(*RS*)-2-((*SR*)-(4-acetylphenyl)(hydroxy)methyl)-*N*-(4-methoxyphenyl)-*N*-methylhexanamide (*anti*-7). Following the standard procedure for three-component condensations, the reaction of 4-acetylbenzaldehyde (148.2 mg, 1.00 mmol) afforded *anti*-7 as a white solid (167.2 mg, 0.436 mmol, 87% yield) after purification by flash chromatography (hexanes to 4:1 hexanes:EtOAc) ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.84 (d, *J* = 8.5 Hz, 2H), 6.70-6.58 (m, 2H), 4.94 (d, *J* = 7.5 Hz, 1H), 4.69 (dd, *J* = 7.5, 5.0 Hz, 1H), 3.80 (s, 3H), 3.08 (s, 3H), 2.71-2.61 (m, 1H), 2.58 (s, 3H), 1.73-1.66 (m, 1H), 1.52-1.48 (m, 1H), 1.22-1.10 (m, 4H), 0.83 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 199.0, 176.1, 160.3, 151.1, 137.7, 137.4, 130.2, 129.6, 127.7, 115.7, 75.8, 56.5, 48.8, 37.8, 31.5, 30.4, 27.5, 23.7, 14.5; HRMS (ESI) calculated for C₂₃H₃₀NO₄ [M+H]⁺ 384.2175, found 384.2178.

(*RS*)-2-((*SR*)-(4-cyanophenyl)(hydroxy)methyl)-*N*-(4-methoxyphenyl)-*N*-methylhexanamide (*anti*-8). Following the standard procedure for three-component condensations, the reaction of 4-formylbenzonitrile (131.1 mg, 1.00 mmol) afforded *anti*-8 (133.3 mg, 0.364 mmol, 73% yield) as a white solid after purification by flash chromatography (hexanes to 4:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.87 (d, *J* = 8.0 Hz, 2H), 6.73-6.57 (m, 2H), 5.04 (d, *J* = 8.0 Hz, 1H), 4.69 (dd, *J* = 7.5, 4.5 Hz, 1H), 3.81 (s, 3H), 3.07 (s, 3H), 2.61 (ddd, *J* = 7.5, 6.5, 6.0 Hz, 1H), 1.72-1.65 (m, 1H), 1.53-1.47 (m, 1H), 1.23-1.13 (m, 4H), 0.83 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 175.9, 160.3 151.4, 137.2, 133.5, 130.1, 128.4, 120.2, 115.8, 112.0, 75.5, 56.6, 48.6, 37.8, 31.4, 30.4, 23.6, 14.5; HRMS (ESI) calculated for C₂₂H₂₇N₂O₃ [M+H]⁺ 367.2022, found 367.2024.

(*RS*)-2-((*SR*)-hydroxy(3-(trifluoromethyl)phenyl)methyl)-*N*-(4-methoxyphenyl)-*N*methylhexanamide (*anti*-9). Following the standard procedure for three-component condensations, the reaction of 3-(trifluoromethyl)benzaldehyde (131.1 μL, 1.00 mmol) afforded *anti*-9 (129.3 mg, 0.316 mmol, 63% yield) as a white solid after purification by flash chromatography (hexanes to 9:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.62 (d, *J* = 7.5 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.46-7.43 (m, 2H), 6.83 (d, *J* = 9.0 Hz, 2H), 6.67-6.50 (m, 2H), 5.05 (d, *J* = 8.0 Hz, 1H), 4.71 (dd, *J* = 7.5, 4.5 Hz, 1H), 3.79 (s, 3H), 3.06 (s, 3H), 2.60 (ddd, *J* = 6.0, 5.5, 5.0 Hz, 1H), 1.75-1.66 (m, 1H), 1.57-1.48 (m, 1H), 1.23-1.13 (m, 4H), 0.84 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 176.1, 160.3, 147.3, 137.3, 131.3, 131.2 (q, *J* = 31.5 Hz), 130.5, 130.0, 125.9 (q, *J* = 269.9 Hz), 125.3 (q, *J* = 3.8 Hz), 124.2 (q, *J* = 3.8 Hz), 115.7, 75.5, 56.5, 48.9, 37.8, 31.5, 30.4, 23.7, 14.5; HRMS (ESI) calculated for C₂₂H₂₇NO₃F₃ [M+H]⁺ 410.1943, found 410.1943.

(*RS*)-2-((*SR*)-hydroxy(2-(trifluoromethyl)phenyl)methyl)-*N*-(4-methoxyphenyl)-*N*methylhexanamide (*anti*-10). Following the standard procedure for three-component condensations, the reaction of 2-(trifluoromethyl)benzaldehyde (131.9 µL, 1.00 mmol) afforded *anti*-10 (150.6 mg, 0.368 mmol, 74% yield) as a white solid after purification by flash chromatography (hexanes to 85:15 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 345 K) δ 7.69-7.65 (m, 2H), 7.62 (d, *J* = 7.5 Hz, 1H), 7.51 (t, *J* = 7.5 Hz, 1H), 6.77 (d, *J* = 8.5 Hz, 2H), 6.50-6.28 (m, 2H), 5.28 (d, *J* = 7.5 Hz, 1H), 5.07-5.03 (m, 1H), 3.78 (s, 3H), 3.10 (s, 3H), 2.72-2.66 (m, 1H), 1.82-1.74 (m, 1H), 1.57-1.50 (m, 1H), 1.25-1.13 (m, 4H), 0.85 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 176.1, 160.3, 144.6, 137.2, 133.8, 129.8, 129.3, 129.2, 127.8 (q, *J* = 29.8 Hz), 127.11 (q, *J* = 6.3 Hz), 125.8 (q, *J* = 272.5 Hz), 115.7, 71.7, 56.6, 48.0, 37.8, 31.9, 30.4, 23.6, 14.5; HRMS (ESI) calculated for C₂₂H₂₇NO₃F₃ [M+H]⁺ 410.1943, found 410.1942.

(*RS*)-2-((*SR*)-hydroxy(naphthalen-2-yl)methyl)-*N*-(4-methoxyphenyl)-*N*-methylhexanamide (*anti*-11). Following the standard procedure for three-component condensations, the reaction of 2-naphthaldehyde (156.2 mg, 1.00 mmol) afforded *anti*-11 (134.0 mg, 0.342 mmol, 68% yield) as a white solid after purification by flash chromatography (hexanes to 90:10 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.92-7.88 (m, 1H), 7.87-7.83 (m, 2H), 7.66 (s, 1H), 7.54-7.49 (m, 2H), 7.29 (dd, *J* = 8.5, 1.5 Hz, 1H), 6.73 (d, *J* = 8.5 Hz, 2H), 6.65-6.48 (m, 2H), 4.85 (d, *J* = 7.5 Hz, 1H), 4.81-4.77 (m, 1H), 3.78 (s, 3H), 3.06 (s, 3H), 2.75-2.71 (m, 1H), 1.76-1.68 (m, 1H), 1.52-1.45 (m, 1H) 1.25-1.14 (m, 4H), 0.82 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 176.3, 160.1, 143.3, 137.5, 134.6, 134.2, 130.2, 129.2, 129.1, 129.0, 127.6, 127.2, 126.2, 125.8, 115.5, 76.5, 56.5, 49.0, 37.8, 31.7, 30.4, 23.7, 14.5; HRMS (ESI) calculated for C₂₅H₃₀NO₃ [M+H]⁺ 392.2226, found 392.2228

(*RS*)-2-((*SR*)-hydroxy(4-nitrophenyl)methyl)-*N*-(4-methoxyphenyl)-*N*-methylhexanamide (*anti*-12). Following the standard procedure for three-component condensations, the reaction of 4-nitrobenzaldehyde (151.1 mg, 1.00 mmol) afforded *anti*-12 (127.0 mg, 0.329 mmol, 66% yield) as a white solid after purification by flash chromatgoraphy (hexanes to 9:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 8.17 (d, *J* = 8.5 Hz, 2H), 7.39 (d, *J* = 9.0 Hz, 2H), 6.86 (d, *J* = 9.0 Hz, 2H), 6.75-6.59 (m, 2H), 5.10 (d, *J* = 7.5 Hz, 1H), 4.75 (dd, *J* = 7.5, 5.0 Hz, 1H), 3.80 (s, 3H), 3.07 (s, 3H), 2.66-2.60 (m, 1H), 1.75-1.67 (m, 1H), 1.57-1.49 (m, 1H), 1.23-1.13 (m, 4H), 0.84 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 175.9, 160.3, 153.5, 148.7, 137.2, 130.1, 128.5, 124.7, 115.8, 75.3, 56.6, 48.6, 37.8, 31.4, 30.4, 23.6, 14.5; HRMS (ESI) calculated for C₂₁H₂₇N₂O₅ [M+H]⁺ 387.1920, found 387.1915.

(*RS*)-2-((*SR*)-furan-2-yl(hydroxy)methyl)-*N*-(4-methoxyphenyl)-*N*-methylhexanamide (*anti*-13). Following the standard procedure for three-component condensations, the reaction of 2-furaldehyde (82.9 µL, 1.00 mmol) afforded *anti*-13 (97.8 mg, 0.295 mmol, 59% yield) as a white

solid after purification by flash chromatography (hexanes to 85:15 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 310 K) δ 7.42 (d, *J* = 2.5 Hz, 1H), 6.95-6.92 (m, 4H), 6.37 (dd, *J* = 3.5, 3.0 Hz, 1H), 6.20 (d, *J* = 3.0 Hz, 1H), 4.65-4.62 (m, 1H), 4.56 (d, *J* = 7.5 Hz, 1 H), 3.81 (s, 3H), 3.15 (s, 3H), 2.78-2.74 (ddd, *J* = 8.0, 6.5, 6.0 Hz, 1H), 1.60-1.53 (m, 1H), 1.36-1.29 (m, 1H), 1.15-1.07 (m, 4H), 0.81 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 176.2, 160.3, 158.0, 143.1, 137.8, 130.4, 115.8, 111.7, 107.8, 70.3, 56.6, 46.7, 38.0, 31.1, 30.3, 23.7, 14.5; HRMS (ESI) calculated for C₁₉H₂₆NO₄ [M+H]⁺ 332.1862, found 332.1868.

(RS)-2-((SR)-(4-chlorophenyl)(hydroxy)methyl)-N-(4-methoxyphenyl)-N-

methylhexanamide (*anti*-14). Following the standard procedure for three-component condensations, the reaction of 4-chlorobenzaldehyde (140.6 mg, 1.00 mmol) afforded *anti*-14 (119.1 mg, 0.317 mmol, 63% yield) as a white solid after purification by flash chromatography (hexanes to 85:15 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.34 (d, *J* = 8.5 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.86 (d, *J* = 9.0 Hz, 2H), 6.77-6.63 (m, 2H), 4.82 (d, *J* = 7.5 Hz, 1H), 4.62 (dd, *J* = 7.0, 5.5 Hz, 1H), 3.80 (s, 3H), 3.09 (s, 3H), 2.59 (ddd, *J* = 8.0, 7.0, 5.5 Hz, 1H), 1.70-1.62 (m, 1H), 1.47-1.39 (m, 1H), 1.21-1.08 (m, 4H), 0.82 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 176.1, 160.3, 144.7, 137.5, 133.7, 130.2, 129.5, 129.2, 115.7, 75.6, 56.6, 49.0, 37.9, 31.5, 30.4, 23.7, 14.5; HRMS (ESI) calculated for C₂₁H₂₇NO₃Cl [M+H]⁺ 376.1679, found 376.1679.

(RS)-2-((SR)-hydroxy(phenyl)methyl)-N-(4-methoxyphenyl)-N-methylhexanamide

(*anti*-15). Following the standard procedure for three-component condensations, the reaction of benzaldehyde (101.1 µL, 1.00 mmol) afforded *anti*-15 (99.3 mg, 0.291 mmol, 58% yield) as a white solid after purification by flash chromatography (hexanes to 9:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.35-7.27 (m, 3H), 7.16 (m, 2H), 6.83 (d, *J* = 9.0 Hz, 2H), 6.72-6.55 (m, 2H), 4.76 (d, *J* = 7.5 Hz, 1H), 4.63-4.60 (m, 1H), 3.80 (s, 3H), 3.08 (s, 3H), 2.62-2.58 (ddd, *J* = 8.0, 7.0, 5.5 Hz, 1H), 1.72-1.64 (m, 1H), 1.47-1.39 (m, 1H), 1.21-1.11 (m, 4H), 0.81 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 176.3, 160.2, 145.9, 137.6, 130.3, 129.6, 128.6, 127.5, 115.6, 76.4, 56.5, 49.2, 37.8, 31.7, 30.5, 23.7, 14.5; HRMS (ESI) calculated for C₂₁H₂₈NO₃ [M+H]⁺ 342.2069, found 342.2073.

(*RS*)-2-((*SR*)-hydroxy(4-methoxyphenyl)methyl)-*N*-(4-methoxyphenyl)-*N*methylhexanamide (anti-16). Following the standard procedure for three-component condensations, the reaction of *p*-anisaldehyde (121.7 μL, 1.00 mmol) afforded *anti*-16 (82.0 mg, 0.221 mmol, 44% yield) as a white solid after purification by flash chromatography (hexanes to 4:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.07 (d, *J* = 8.5 Hz, 2H), 6.90-6.85 (m, 4H), 6.77-6.68 (m, 2H), 4.57-4.54 (m, 2H), 3.80 (m, 6H), 3.10 (s, 3H) 2.61-2.56 (m, 1H), 1.68-1.59 (m, 1H), 1.41-1.33 (m, 1H), 1.20-1.07 (m, 4H), 0.81 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 176.4, 160.4, 160.2, 137.9, 137.7, 130.4, 128.7, 115.6, 114.8, 76.1, 56.5, 56.3, 49.4, 37.9, 31.6, 30.5, 23.7, 14.5; HRMS (ESI) calculated for C₂₂H₃₀NO₄ [M+H]⁺ 372.2175, found 372.2178.

(*2RS*,3*SR*)-3-hydroxy-*N*-(4-methoxyphenyl)-*N*,2-dimethyl-3-(4-(trifluoromethyl)phenyl) propanamide (*anti*-17). Following the standard procedure for three-component condensations, the reaction of 1-siloxy-1-propyne (159.3 mg, 0.750 mmol) afforded *anti*-17 (138.5 mg, 0.377 mmol, 75% yield) as a white solid after purification by flash chromatography (hexanes to 4:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 315 K) δ 7.63 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.88 (d, *J* = 8.0 Hz, 2H), 6.82-6.71 (m, 2H), 4.83 (d, *J* = 7.0 Hz, 1H), 4.66-4.61, (m, 1H), 3.80 (s, 3H), 3.06 (s, 3H), 2.71-2.64 (m, 1H), 1.06 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 176.6, 160.4, 150.2, 137.5, 130.1 (q, *J* = 31.6 Hz), 129.7, 128.0, 126.4 (q, *J* = 3.8 Hz), 125.9 (q, *J* = 269.8 Hz), 115.9, 77.1, 56.6, 43.7, 37.7, 16.4; HRMS (ESI) calculated for C₁₉H₂₁NO₃F₃[M+H]⁺ 368.1474, found 368.1479.

(*RS*)-2-((*SR*)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-*N*-(4-methoxyphenyl)-*N*-methyl-4-phenylbutanamide (*anti*-18). Following the standard procedure for three-component condensations, the reaction of siloxy alkyne 29 (226.9 mg, 0.750 mmol) afforded *anti*-18 (165.0 mg, 0.361 mmol, 72% yield) after purification by flash chromatography (hexanes to 9:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.63 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.22 (t, *J* = 7.5 Hz, 2H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.06 (d, *J* = 7.5 Hz, 2H), 6.77 (d, *J* = 9.0 Hz, 2H), 6.63-6.52 (m, 2H), 5.11 (d, *J* = 7.5 Hz, 1H), 4.80 (dd, *J* = 7.5, 4.5 Hz, 1H), 3.80 (s, 3H), 3.07 (s, 3H), 2.67 (ddd, *J* = 9.5, 5.0, 4.5 Hz, 1H), 2.60-2.53 (m, 2H), 2.10-1.87 (d, 2H); ¹³C NMR (125 MHz, CD₃CN) δ 175.8, 160.3, 150.3, 142.8, 137.1, 130.1 (q, *J* = 31.8 Hz), 129.9, 129.7, 129.6, 128.3, 127.3, 126.5 (q, *J* = 3.6 Hz), 125.9 (q, *J* = 269.6 Hz), 115.8, 74.8, 56.6, 48.2, 37.9, 34.0, 33.0; HRMS (ESI) calculated for C₂₆H₂₇NO₃F₃ [M+H]⁺ 458.1943, found 458.1956.

(*2RS*,*3SR*)-2-cyclohexyl-3-hydroxy-*N*-(4-methoxyphenyl)-*N*-methyl-3-(4-(trifluoromethyl) phenyl)propanamide (*anti*-19). Following the standard procedure for three-component condensations, the reaction of 2-cyclohexyl-1-siloxy-ethyne (210.4 mg, 0.750 mmol) afforded *anti*-19 (175.5 mg, 0.398 mmol, 80% yield) as a white solid after purification by flash chromatography (hexanes to 9:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 350 K) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.72 (d, *J* = 8.5 Hz, 2H), 6.36-6.06 (m, 2H), 5.52 (d, *J* = 9.0 Hz, 1H), 4.93-4.88 (m, 1H), 3.78 (s, 3H), 3.03 (s, 3H), 2.37 (dd, *J* = 9.0, 3.0 Hz, 1H), 2.01-1.93 (m, 2H), 1.79-1.71 (m, 3H), 1.70-1.64 (m, 1H), 1.34-1.22 (m, 2H), 1.21-1.12 (m, 1H), 1.10-1.00 (m, 1H), 0.98-0.88 (m, 1H); ¹³C NMR (125 MHz, CD₃CN) δ 175.7, 160.3, 150.9, 136.7, 130.2 (q, *J* = 31.5), 129.9, 128.1, 126.6 (q, *J* = 3.8 Hz), 126.0 (q, *J* = 269.8 Hz), 115.5, 72.5, 56.5, 54.4, 39.7, 38.0, 33.2, 31.7, 27.7, 27.5, 27.5; HRMS (ESI) calculated for C₂₄H₂₉NO₃F₃ [M+H]⁺ 436.2100, found 436.2108.

(*2RS*,3*SR*)-2-cyclopropyl-3-hydroxy-*N*-(4-methoxyphenyl)-*N*-methyl-3-(4-(trifluoromethyl) phenyl)propanamide (*anti*-20). Following the standard procedure for three-component condensations, the reaction of siloxy alkyne 28 (178.8 mg, 0.750 mmol) afforded *anti*-20 (175.5 mg, 0.433 mmol, 87% yield) as a white solid after purification by flash chromatography (hexanes to 4:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 6.81 (d, *J* = 9.0 Hz, 2H), 6.67-6.51 (m, 2H), 5.02 (d, *J* = 7.0 Hz, 1H), 4.88-4.84 (m, 1H), 3.79 (s, 3H), 3.10 (s, 3H), 1.94-1.89 (m, 1H), 1.18-1.11 (m, 1H), 0.47-0.41 (m, 1H), 0.38-0.31 (m, 1H), 0.08-0.02 (m, 1H), -0.18--0.24 (m, 1H); ¹³C NMR (125 MHz, CD₃CN) δ 175.4, 160.3, 150.4, 137.2, 130.2 (q, *J* = 31.8 Hz), 130.1, 128.2, 126.4, (q, *J* = 31.8

Hz), 126.0 (q, J = 269.6 Hz), 115.7, 76.8, 56.5, 53.4, 37.9, 13.4, 5.0, 4.6; HRMS (ESI) calculated for C₂₁H₂₃NO₃F₃ [M+H]⁺ 394.1630, found 394.1633.

(*RS*)-2-((*SR*)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-*N*-methyl-*N*-phenylhexanamide (*anti*-21). Following the standard procedure for three-component condensations, the reaction of *N*-methylaniline (54.2 µL, 0.500 mmol) afforded *anti*-21 (144.0 mg, 0.379 mmol, 76% yield) as a white solid after purification by flash chromatography (hexanes to 9:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 315 K) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.35-7.30 (m, 5H), 6.83-6.70 (m, 2H), 4.97 (d, *J* = 7.0 Hz, 1H), 4.73-4.69 (m, 1H), 3.11 (s, 3H), 2.61 (ddd, *J* = 8.0, 5.5, 5.0 Hz, 1H,), 1.74-1.65 (m, 1H), 1.48-1.40 (m, 1H), 1.23-1.08 (m, 4H), 0.81 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 175.7, 150.4, 144.7, 130.8, 130.2 (q, 31.8 Hz), 129.2, 129.0, 128.2, 126.5 (q, *J* = 3.8 Hz), 125.9 (q, *J* = 269.8 Hz), 75.7, 49.1, 37.8, 31.5, 30.4, 23.7, 14.5; HRMS (ESI) calculated for C₂₁H₂₅NO₂F₃ [M+H]⁺ 380.1837, found 380.1836.

(*RS*)-*N*-(4-bromophenyl)-2-((*SR*)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-*N*methylhexanamide (*anti*-22). Following the standard procedure for three-component condensations, the reaction of 4-bromo-*N*-methylaniline (62.8 µL, 0.500 mmol) afforded *anti*-22 (170.0 mg, 0.371 mmol, 74% yield) as a white solid after purification by flash chromatography (hexanes to 85:15 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 315 K) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.76 (d, *J* = 6.0 Hz, 2H), 4.75-4.68 (m, 2H), 3.11 (s, 3H), 2.64-2.58 (m, 1H), 1.71-1.61 (m, 1H), 1.38-1.28 (m, 1H), 1.21-1.05 (m, 4H), 0.80 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 175.4, 150.1, 144.0, 133.8, 131.1, 130.2 (q, *J* = 31.8 Hz), 128.3, 126.5 (q, *J* = 3.8 Hz), 125.9 (q, *J* = 269.6 Hz), 122.3, 75.9, 49.4, 37.7, 31.4, 30.3, 23.7, 14.5; HRMS (ESI) calculated for C₂₁H₂₄NO₂BrF₃ [M+H]⁺ 458.0943, found 458.0953.

(*RS*)-2-((*SR*)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-*N*-(3-methoxyphenyl)-*N*methylhexanamide (*anti*-23). Following the standard procedure for three-component condensations, the reaction of 3-methoxy-*N*-methylaniline (65.4 µL, 0.500 mmol) afforded *anti*-23 (139.0 mg, 0.340 mmol, 68% yield) as a white solid after purification by flash chromatography (hexanes to 85:15 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 7.5 Hz, 2H), 7.23 (t, *J* = 8.0 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 6.41-6.31 (m, 2H), 4.94 (d, *J* = 7.5 Hz, 1H), 4.74-4.70 (m, 1H), 3.75 (s, 3H), 3.11 (s, 3H), 2.70-2.63 (m, 1H), 1.74-1.65 (m, 1H), 1.52-1.44 (m, 1H), 1.23-1.09 (m, 4H), 0.82 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 175.6, 161.7, 150.3, 145.8, 131.5, 130.1 (q, *J* = 31.6 Hz), 128.1, 126.5 (q, *J* = 3.8 Hz), 125.9 (q, *J* = 269.3 Hz), 121.0, 114.8, 114.7, 75.7, 56.5, 49.1, 37.7, 31.5, 30.5, 23.7, 14.5; HRMS (ESI) calculated for C₂₂H₂₇NO₃F₃ [M+H]⁺ 410.1943, found 410.1946.

(*RS*)-*N*-ethyl-2-((*SR*)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-*N*-phenylhexanamide (*anti*-24). Following the standard procedure for three-component condensations, the reaction of *N*-ethylaniline (62.9 μ L, 0.500 mmol) afforded *anti*-24 (153.7 mg, 0.391 mmol, 78% yield) as a white solid after purification by flash chromatography (hexanes to 9:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.35-7.28 (m, 5H), 6.75-6.50 (m, 2H), 5.09 (d, *J* = 8.0 Hz, 1H), 4.71 (dd, *J* = 7.5, 4.5 Hz, 1H), 3.69 (dq, *J* = 14.0, 7.0 Hz, 1H), 3.53 (dq, *J* = 14.0, 7.0 Hz, 1H), 2.51-2.46 (m, 1H), 1.76-1.67 (m, 1H), 1.58-1.49 (m, 1H), 1.25-1.10 (m, 4H), 0.98 (t, *J* = 7.5 Hz, 3H), 0.83 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 175.2, 150.5, 142.8, 130.7, 130.2 (q, *J* = 31.6 Hz), 130.0, 129.4, 128.2, 126.4 (q, *J* = 3.8 Hz), 125.9 (q, *J* = 269.4 Hz), 75.6, 49.1, 45.2, 31.6, 30.4, 23.7, 14.5, 13.5; HRMS (ESI) calculated for C₂₂H₂₇NO₂F₃[M+H]⁺ 394.1994, found 394.1996.

(*RS*)-*N*-allyl-2-((*SR*)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-*N*-phenylhexanamide (*anti*-25). Following the standard procedure for three-component condensations, the reaction of *N*-allylaniline (67.8 µL, 0.500 mmol) afforded *anti*-25 (115.1 mg, 0.284 mmol, 57% yield) as a white solid after purification by flash chromatography (hexanes to 9:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.37-7.29 (m, 5H), 6.73 (m, 2H), 5.74 (ddt, *J* = 12.0, 10.5, 6.0 Hz, 1H), 5.03 (d, *J* = 10.0 Hz, 1H), 4.98 (dd, *J* = 17.0, 1.5 Hz, 1H), 4.91 (d, *J* = 7.5 Hz, 1H), 4.76-4.71 (m, 1H), 4.29 (dd, *J* = 15.0, 6.0 Hz, 1H), 4.11 (dd, *J* = 15.0, 6.0 Hz 1H), 2.60-2.54 (m, 1H), 1.76-1.67 (m, 1H), 1.54-1.45 (m, 1H), 1.25-1.10 (m, 4H), 0.82 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 175.5, 150.3, 143.0, 134.6, 130.6, 130.2 (q, *J* = 31.6 Hz), 130.1, 129.3, 128.3, 126.5 (q, *J* = 3.8 Hz), 125.9 (q, *J* = 268.8 Hz) 118.4, 75.6, 53.0, 49.3, 31.5, 30.4, 23.6, 14.5; HRMS (ESI) calculated for C₂₃H₂₇NO₂F₃ [M+H]⁺ 406.1994, found 406.1998.

(*RS*)-2-((*SR*)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-*N*-isopropyl-*N*-phenylhexanamide (*anti*-26). Following the standard procedure for three-component condensations, the reaction of *N*-isopropylaniline (72.4 μ L, 0.500 mmol) afforded *anti*-26 (106.1 mg, 0.260 mmol, 52% yield) as a white solid after purification by flash chromatography (hexanes to 9:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.66 (d, *J* = 8.0 Hz, 2H), 7.41-7.35 (m, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.24-7.15 (m, 1H), 7.13-7.05 (m, 1H), 5.99-5.91 (m, 1H), 5.25 (d, *J* = 8.0 Hz, 1H), 4.87-4.77 (m, 1H), 4.68 (dd, *J* = 7.0, 4.0 Hz, 1H), 2.31-2.28 (m, 1H), 1.76-1.67 (m, 1H), 1.63-1.55 (m, 1H), 1.26-1.12 (m, 4H), 0.96 (t, *J* = 6.5 Hz, 3H) 0.88-0.81 (m, 6H); ¹³C NMR (125 MHz, CD₃CN) δ 175.3, 150.6, 138.8, 131.8, 131.7, 130.2, 130.2, 130.1 (q, *J* = 31.9 Hz), 129.7, 128.2, 126.4 (q, *J* = 3.8 Hz), 125.9 (q, *J* = 270.0 Hz), 75.3, 49.7, 47.2, 31.6, 30.4, 23.7, 21.5, 21.3, 14.5; HRMS (ESI) calculated for C₂₃H₂₉NO₂F₃ [M+H]⁺ 408.2150, found 408.2154.

(*RS*)-2-((*SR*)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-*N*,*N*-diisopropylhexanamide (*anti*-27). Following the standard procedure for three-component condensations, the reaction of

diisopropylamine (35.1 µL, 0.250 mmol) afforded *anti*-27 (28.3 mg, 0.076 mmol, 30% yield) as a white solid after purification by flash chromatography (hexanes to 12:1 hexanes:EtOAc). ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.63 (d, J = 8.5 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 5.76 (d, J = 8.5 Hz, 1H), 4.82 (dd, J = 8.0, 3.0 Hz, 1H), 3.87-3.78 (m, 1H), 3.34-3.20 (m, 1H), 3.05 (ddd, J = 9.0, 6.0, 3.5 Hz, 1H), 1.92-1.82 (m, 1H), 1.76-1.67 (m, 1H), 1.41-1.30 (m, 4H), 1.29 (d, J = 7.0 Hz, 3H), 1.14 (d, J = 7.0 Hz, 3H), 1.04 (d, J = 7.0 Hz, 3H), 0.82 (t, J = 7.5 Hz, 3H), 0.51 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 176.0, 151.0, 129.8 (q, J = 31.3 Hz), 128.0, 126.2 (q, J = 3.8 Hz), 126.0 (q, J = 269.5 Hz), 75.8, 50.3, 48.1, 47.3, 32.5, 30.8, 24.0, 21.3, 21.2, 21.0, 20.6, 14.7; HRMS (ESI) calculated for C₂₀H₃₁NO₂F₃ [M+H]⁺ 374.2307, found 374.2306.

3. New Phosphine-Catalyzed Reactions

Procedure for Acylation of Amines.

To a solution of tris(4-methoxyphenyl)phosphine (17.6 mg, 0.050 mmol), siloxy alkyne **28** (89.4 mg, 0.375 mmol), and indoline **30** (29.8 μ L, 0.250 mmol) in toluene (0.50 mL) was added 4-fluorobenzyl alcohol (54.6 μ l, 0.50 mmol). The reaction was heated to 60 °C in an oil bath and was allowed to proceed for 48 hours. The reaction mixture was cooled to room temperature, and was concentrated by rotary evaporation. The crude residue was loaded directly onto a silica column and purified by flash chromatography (97.5:2.5 hexanes:EtOAc) affording amide **31** (47.7mg, 0.237 mmol, 95% yield) as a white solid.

2-cyclopropyl-1-(indolin-1-yl)ethanone (**31**). ¹H NMR (500 MHz, CDCl₃, 293 K) δ 8.27 (d, *J* = 8.0 Hz, 1H), 7.21-7.14 (m, 2H), 7.02-6.96 (m, 1H), 4.01 (t, *J* = 8.5 Hz, 2H), 3.18 (t, *J* = 8.5 Hz, 2H), 2.37 (d, *J* = 7.0 Hz, 2H), 1.22-1.12 (m, 1H), 0.64-0.59 (m, 2H), 0.25-0.17 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) 171.2, 143.3, 131.2, 127.8, 124.7, 123.7, 117.3, 48.1, 41.4, 28.3, 6.8, 4.7; HRMS (ESI) calculated for C₁₃H₁₆NO [M+H]⁺ 202.1232, found 202.1233.

2-cyclopropyl-*N***-(***p***-tolyl)acetamide** (33). Following the general procedure for acylation of amines, the reaction of *p*-toluidine 32 (27.5 μ L, 0.250 mmol) afforded amide 33 (45.5 mg, 0.240

mmol, 96% yield) as a white solid ¹H NMR (500 MHz, CDCl₃, 293 K) δ 7.70 (br s, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 2.35-2.29 (m, 5H), 1.12-1.02 (m, 1H), 0.70-0.64 (m, 2H) 0.30-0.24 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) 170.8, 135.5, 134.0, 129.6, 120.2, 42.5, 21.0, 7.4, 4.9; HRMS (ESI) calculated for C₁₂H₁₆NO [M+H]⁺ 190.1232, found 190.1234.

Procedure for the Acylation of 2,6-Diisopropylphenol.

2,6-diisopropylphenyl 2-cyclopropylacetate (**35**). To a solution of tris(4-methoxyphenyl)phosphine (17.6 mg, 0.050 mmol) and siloxy alkyne **28** (59.6 mg, 0.25 mmol) in toluene (0.50 mL) was added 2,6-diisopropylphenol (92.7 μ L, 0.500 mmol). The reaction was heated to 60 °C in an oil bath and was allowed to proceed for 48 hours. The reaction mixture was cooled to room temperature, and was concentrated by rotary evaporation. The crude residue was loaded directly onto a silica column and purified by flash chromatography (200:1 hexanes:EtOAc) affording **35** as a clear oil (55.0 mg, 0.211 mmol, 85 % Yield). ¹H NMR (500 MHz, CDCl₃, 293 K) δ 7.23-7.20 (m, 1H), 7.17-7.15 (m, 2H), 2.96 (septet, *J* = 7.0 Hz, 2H), 2.50 (d, *J* = 7.0 Hz, 2H), 1.29-1.24 (m, 1H), 1.21 (d, *J* = 7.0 Hz, 12H), 0.67-0.62 (m, 2H), 0.33-0.29 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) 172.0, 145.9, 140.5, 126.6, 124.1, 39.8, 27.7, 23.9, 23.0, 7.5, 4.8; HRMS (ESI) calculated for C₁₇H₂₄O₂Na [M+Na]⁺ 283.1674, found 283.1669.

Procedure for the Acylation of Diethyl Malonate.

Diethyl 2-(4-phenylbutanoyl)malonate (37). Diethyl malonate (151.8 μ L, 1.0 mmol) was added to a solution of tris(4-methoxyphenyl)phosphine (35.4 mg, 0.100 mmol) and siloxy alkyne **29** (151.3 mg, 0.3500 mmol) in toluene (0.50 mL). The reaction was heated to 60 °C in an oil bath and was allowed to proceed for 48 h. The reaction mixture was then cooled to room temperature and was treated with HF (500 μ l, 5% aq., prepared by dilution of Fisher 49% aq. HF with CH₃CN). The reaction was allowed to proceed for an additional 2 h, the mixture was diluted with CH₂Cl₂ (5 mL) and washed with saturated aqueous NaHCO₃ (5 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 5 mL), the combined organic layers were dried with anhydrous Na₂SO₄, filtered, and concentrated via rotary evaporation. The crude mixture was purified by flash chromatography (hexanes to 97:3 hexanes:EtOAc) affording **37** as a clear oil (114.5 mg,

0.374 mmol, 75% yield) as a 1.5:1 mixture of enol and keto tautomers. ¹H NMR (500 MHz, CDCl₃, 293 K) δ 13.44, 4.33 (s, s, total 1H), 7.30-7.25 (m, 2H), 7.21-7.15 (m, 3H), 4.29-4.16 (m, 4H), 2.69-2.61 (m, 3H), 2.50-2.45 (m, 1H), 2.01-1.92 (m, 2H), 1.33-1.24 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) 198.9, 182.8, 171.4, 166.3, 164.8, 141.7, 141.6, 128.7, 128.6, 128.6, 126.2, 126.2, 100.1, 65.6, 62.5, 61.6, 61.2, 41.4, 35.6, 34.9, 33.6, 28.5, 25.1, 14.3, 14.3, 14.2; HRMS (ESI) calculated for C₁₇H₂₃O₅ [M+H]⁺ 307.1545, found 307.1543.

4. Library Synthesis and Characterization

General Procedure for the Synthesis of Library Compounds

A flame-dried test tube equipped with a stirbar was charged with 0.3 mmol of the requisite amine, and 0.6 ml of a 0.1M solution of tris(4-methoxyphenyl)phosphine in anhydrous toluene. To the resulting suspension was added the requisite aldehyde (0.6 mmol), siloxy alkyne (0.45 mmol) and 4-fluorobenzyl alcohol (65.6 µL, 0.6 mmol). The test tubes were sealed with septa, reactions were heated to 60 °C and were allowed to progress for 48 hours. The reactions were cooled to room temperature and concentrated by rotary evaporation. The resulting crude mixtures were diluted with DMSO until a final volume of 1.0 mL was reached. All library compounds were purified by preparative HPLC-MS on a Waters system composed of the following components: Waters 2545 binary gradient module, Waters 515 HPLC pump, Waters 3100 quadrupole mass spectrometer, Waters system fluidics organizer, Waters 2767 sample manager, Waters 2489 dual channel UV-Vis detector, Waters 2424 evaporative light scattering detector, and Masslynx software v4.1. Preparative HPLC conditions: Waters X-bridge Prep C18 5 µm OBD 19×150 mm column, flow rate 19.0 mL/min, injection volume 1.0 mL; mobile phase A: water with 0.1% formic acid; mobile phase B: methanol with 0.1% formic acid; typical gradient: 0-1.25 min 40-63% B, 1.25-7.25 min 63-77% B, 7.25-8.25 min 77-92% B, 8.25-11.85 min 92-100% B, 11.85-12 min 100-40% B. Fractions were collected by ES+ MS detection of product ion. The purity of all library compounds was then assessed by analytic HPLC-MS. Analytical HPLC conditions: ES Industries Sonoma C18 5 µm 100 Å 5 cm X 2.1 mm, flow rate 1.2 mL/min, injection volume 20 µL, ; mobile phase A: water with 0.1% formic acid; mobile phase B: methanol with 0.1% formic acid; typical gradient: 0-4.25 min 45-100% B, 4.25-5.00 min 100% B, 5.00-5.50 min 100-45% B, 5.50-6.50 min 45% B. Analytical traces for all library members are provided below. Compounds 41, 43, 50, 68, and 73 were randomly selected for further analysis by ¹H and ¹³C NMR spectroscopy.

Supplementary Figure S2. **Synthesis of a 36-Member Library**. **A**: Reaction scheme and purification method. **B**: Structures of building blocks used for library construction. **C**: Structures of individual library members, as well as their isolated yields.

Purity Reports for All Library Compounds

583.92 0 1000.00 200.00 400.00 600.00 800.00

Exact Mass: 345.15

Date:24-May-2011 File:270 A P

-		Page 1
Date:24-May-2011	File:270 B P	
16 31		

Page 1
Pa

Exact Mass: 391.21

23		Page 1
Date:24-May-2011	File:271 C P	

22		Page 1
Date 24-May-2011	File 271 A.P	

Date:24-May-2011

File:271 B P

Page 1

Page 1
Date:24-May-2011 File:271 D P

Exact Mass: 383.21

-		Page 1
Date:24-May-2011	File:272 C P	

IA	EPLE: 5,	,1:1,C 1: (Time	3.64) Combine	(213:219	-(180:182+250:252)	3	1:MS KS+ 9.0e+007
	100	236.10	384.28	406.27	532.37595.04	789.50821.43	19-19-19-12-02-04-5
		200.00	400 .	00	600.00	800,00	1000.00

File:272 A.P

Page 1

Sample Report:

Date:24-May-2011

100-	354.25			
134.01 206.13	376.24	502.34524.32	729.47761.41	
200.00	400.00	600.00	800.00	1000.00

Date:24-May-2011

File:272 B P

Page 1

140.02	200.21 21	6.31 X	Contraction of the contract of the	10.100 House
States and the states of the s	T TOTAL T T T T T	 		
200.00	400.00	600.00	800.00	1000.00

Page 1 File:272 D P Date:24-May-2011

Page 1
Date 31-May-2011 File:284 C P

Chemical Formula: C₁₉H₂₀CINO₂ Exact Mass: 329.12

	Page 1
File:284 A P	
	File 284 A P

Chemical Formula: C₂₀H₂₂CINO₂ Exact Mass: 343.13

- Page 1
Date 31-May-2011 File 284 B P
Sample Report:

Chemical Formula: C₂₁H₂₂CINO₂ Exact Mass: 355.13

Date:31-May-2011 File:284 D P		Page 1
Sample Report		

Date:25-May-2011

File:275 C P

Page 1

Chemical Formula: C₂₃H₂₃NO₂ Exact Mass: 345.17

+		Page 1
Date:25-May-2011	File:275 A.P	
10		

Chemical Formula: C₂₄H₂₅NO₂ Exact Mass: 359.19

-		Page 1
Date:25-May-2011	File 275 B P	

Chemical Formula: C₂₅H₂₅NO₂ Exact Mass: 371.19

- Date:25-May-201	H ^C				FI	e 275	DP							Page 1
Sample Report:	(
MS ES+ :TIC	Impoth	(20,	1x1)							1000;3	71.14	9(226) ;:	3.61	5.6+008
• "]	0.50	····	1.00		1.50	····	2.00	 2.50	·	3.00		3.50	1	Time
MS 25+ :372.	19 Smoot	th (S	0, 1x1)							2012				9.7e+007
. 100										100%;	371.1	19(228)	13.84	5

Exact Mass: 367.18

22 C		Page 1
Date:25-May-2011	File:276 C P	

DAMPLE: 5	,1:1,8 1: (Time: 3.45) Co	mbine (202:2	08-(169:1	71+239:241)	3	1:M3 ES+ 8.4=+007
. 100	325.17	68.24 390.23	516.32	571.11	757.42	
9 1	200.00	400.00		600.00	800.00	1000.00

100 C 100 C		and the second second	
Date	-75-A	Are 2011	
-			

File:276 A.P.

Sample Report:

Page 1

Exact Mass: 363.18

	Page 1
File:276 D P	
	File:276 D P

Chemical Formula: C₁₈H₂₀CINO₃ Exact Mass: 333.11

Date:01-Jun-2011	Elle-778 C E	
Parent Coll Parts		

Page 1

Chemical Formula: C₁₇H₁₈CINO₂ Exact Mass: 303.10

-		Page 1
Date:25-May-2011	File:278 A.P	
Sample Report:		

Chemical Formula: C₁₈H₂₀CINO₂ Exact Mass: 317.12

		Page 1
Date:25-May-2011	File:278 B P	
24:		
Sample Report:		

Chemical Formula: C₁₉H₂₀CINO₂ Exact Mass: 329.12

- Date:01-Jun-201	1			File:278 D P					Page
Sample Report:									
MB MB+ :TIC :	amooth (SG,	1x1)						100%	4.1++00
100-								4.03	
•	1.1					1			-
1	0.50	1.00	1.50	2.00	2.50	3.	00 3.50	4.00	4.50
HE HO+ :330.;	12 Smooth (DD. 11	(1)					100*	6.7++00
E.C.W. 632.124			582					329.12(198)	122,238
100-								4.03	
•								1	1211
0-	0.50	1.00	1.50	2.00	2.50	3.	00 3.50	4.00	4.50
			(_);	2011-00-00 1	12522	0 5926	an octain	122.375	14.19
JV Detector:	TIC Smooth	i (Min.,	1x1)						5.120
							318-1	129.12/1981-3	50
5.00-1	698								
0.0					mutt				Time Time
Beach Mounthing	0.50	1.00	1.50	2.00	2.50	3.	00 3.50	4.00	4.50
2	Compositio	0.45	50+004	68.66	1	Be+004	mace Poulle		
5	Found	3.92	2e+004	31.34	1	2e+005	329.12		
(2) MLSD 514	mal Smooth	(90)	1x1)						0.91
1926 (1927) - 19		0.45756	(1000)					Rat	ige: 0.91
	38		-				974	(329.12(198);	4.00
0.500	0.37		1.27					A	
0.0004	0.50	1.00	1.50	2.00	2.50	3.	00 3.50	4.00	4.50
Peak Number	Compound	Time	AreaAbc	Area %Total	Width	Height	Mass Found		
1		0.37	3e+000	2.68	2	46+001			
4		1.29	2e-001	0.15	ő	2e+001			
5	Found	4.00	9e+001	96.73	ō	9e+002	329.12		
Peak ID Com	pound Tim	e Ma	ss Found						
TAMPLE . S. S.	C St /Pier	- 2.01	S25.12	236-242-1205	205427	8-27511			1-101 104
	and an entrance					(inclusion)			7.8+100
100		312	.15						
			1 000 10			1000000			
- 16	0.03	0.000	332.10	514.91		681.	33		1011202-011

66 Chemical Formula: C₂₂H₂₃NO₃ Exact Mass: 349.17

-		Page 1
Date:01-Jun-2011	File:279 C P	

67 Chemical Formula: C₂₁H₂₁NO₂ Exact Mass: 319.16

- Date:01-Jun-2011	File:279 A P					Page 1
Sample Report:						
MS ES+ :TIC Smooth (SG, 1x1)				319.1 59 3.	58 6(218) .77	5.5#+000
0.50 1.00	1.50 2.00	2.50	3.00	3.50	4.00	4.50
MS NS+ :320.16 Smooth (SG, 1x1)				319	1004 .16(210) 3.88	9.54+007
0.50 1.00	1.50 2.00	2.50	3.00	3.50	4.00	4.50
UV Detector: TIC Smooth (Mn, 1x)	u			1009 319.16 (3.65	218)	2.474 Range: 2.474
2 2.0 0.0					min	TITE TIME
0.50 1.00 Peak Number Compound Time Av 2 Found 3.65	1.50 2.00 reaAbs Area %Total 5e+005 100.00	2.50 Width	3.00 Height Mas 2e+005	3.50 6 Found 319.16	4.00	4.50

(2) ELSD 51	gnal Smooth	h (50,	1x1)				1	008	-	124.104
							519.1	E01210)	sunge:	124.103
D 100.0004							1	100		
-							CONTRACTOR OF THE OWNER	la Ser		1000000
0.000-	0.50	1 00	1.50	2.00	2.50					A SO
Peak Number	Compound	Time	AreaAbc	Area STotal	Width	Height	Mass Found			4.30
2	Found	3.69	26+004	100.00	0	1e+005	319.16			

Peak ID	Found Tir	77 319.16				
BAMPLE:	5,1:2,C 2: (Tim	e: 3.88) Combine	(227:233-(194:1	96+264:266))		1:MB ES+ 8.7++007
100-		320.20				
	174.06	342.21	499.07	661.39	701.31	
ЧТ	200.00	400.1	00	600.00	800.00	1000.00

68 Chemical Formula: C₂₂H₂₃NO₂ Exact Mass: 333.17

Date:01-Jun-2011	File:279 B P					Page 1
Sample Report:						
MS ES+ :VIC Smooth (SG, 1x1)					91* 333.17(22*	5.1#+000
100					57	
0.50 1.00	1.50 2.00	2.50	3.00	3.50	4.00	4.50
45 E5+ :334.17 Smooth (50, 1x	1)				100% 333.17(22) 4.04	9.7**001
0.50 1.00	1.50 2.00	2.50	3.00	3.50	4.00	4.50
IV Detector: TIC Smooth (Mn,)	1x1)					1.87
85				1008	333.17(22%);	angs: 1.871 3.94
				100%	,353.17(224) ;	ange: 1.071 3.94
Peak Number Compound Time 2 Found 3.94	1.50 2.00 AreaAbs Area %Total 2e+005 100.00	2.50 Width 0	3.00 Height 2e+005	100% 3.50 Mass Found 333.17	,339.17(224), 4.00	4.50
Peak Number Compound Time 2 Found 3.54 (2) RLSD Signal Smooth (96, 5	1.50 2.00 AreaAbc Area %Total 2e+005 100.00 1x1)	2.50 Width 0	3.00 Height 2e+005	100% 3.50 Mass Found 333.17	,353.17(229); 4.00	ange: 1.87: 3.94 7.50 14.27
B 0.0 0.50 1.00 Peak Number Compound Time 2 Found 3.54 (2) MLSD Signal Smooth (50, 1) E 10.000	1.50 2.00 AreaAbs Area %Total 2e+005 100.00 1x1)	2.50 Width 0	3.00 Height 2e+005	100% 3.50 Mass Found 333.17	,333.17(224); 4.00 8,333.17(224)	ange: 1,87: 3.94 4.50 16.27: nge: 16.27:);4.02
0.0 0.50 1.00 Peak Number Compound Time 2 Found 3.54 (2) ELED Signal Smooth (SG, 1) 10.000 0.000	1.50 2.00 AreaAbs Area%Total 2e+005 100.00 1x1)	2.50 Width 0	3. oc Height 2e+005	100%) 3.50 Mace Found 333.17 10(2333.17(224); 4.00 4.00 Ph;333.17(224	ange: 1,87: 3.94 4.50 14.27: nge: 14.27:);4.02 74.02
9 0.0 Peak Number Compound Time 2 Found 3.94 (2) ELED Signal Smooth (SG, 1 0.000 0.000 0.50 1.00 Peak Number Compound Time 2 Found 4.02	1.50 2.00 AreaAbc Area %Total 2e+005 100.00 1x1) 1.50 2.00 AreaAbc Area %Total 2e+003 100.00	2.50 Width 0 2.50 Width 0	3.00 Height 2±+005 3.00 Height 1e+004	100% 3.50 Mass Found 333.17 100 3.50 Mass Found 333.17	2333.17(22%) / 4.00 84.00 98;333.17(22%) 4.00	ange: 1,87: 3.94 4.50 14.27: nge: 14.27:);4.02 4.50
Peak Number Compound Time 2 Found 3.94 (2) ELED Signal Smooth (50, 100 0.000 0.000 Peak Number Compound Time 2 Found 4.02 Peak ID Compound Time Mac 2 Found 4.04	1.50 2.00 AreaAbc Area %Total 2e+005 100.00 1x1) 1.50 2.00 AreaAbc Area %Total 2e+003 100.00 5 Found 333.17	2.50 Width 0 2.50 Width 0	3.00 Height 2e+005 3.00 Height 1e+004	100% 3.50 Mass Found 333.17 10(3.50 Mass Found 333.17	8,333.17(224); 4.00 94,333.17(224) 4.00	ange: 1,87: 3.94 4.50 16.27/ nge: 16.27:);4.02 4.50
9 0.0 Peak Number Compound Time 2 Found 3.94 (2) ELED Signal Smooth (96, 1) 0.000 0.000 0.000 Peak Number Compound Time 2 Found 4.02 Peak ID Compound Time Mac 2 Found 4.04 SAMPLE: 5,1:3,C 2: (Time: 4.04)	1.50 2.00 AreaAbc Area %Total 2e+005 100.00 1x1) 1.50 2.00 AreaAbc Area %Total 2e+003 100.00 c Found 333.17 (combine (237:243-(204	2.50 Width 0 2.50 Width 0	3.00 Height 2e+005 3.00 Height 1e+004 4:276})	100% 3.50 Mace Found 333.17 100 3.50 Mace Found 333.17	2333.17(229); 4.00 9;333.17(229) 4.00	Ange: 1.87: 3.94 4.50 14.27: nge: 14.27:):4.02 7:ms 4.50 1:MS ES+ 9.1e+00'

69 Chemical Formula: C₂₃H₂₃NO₂ Exact Mass: 345.17

- Date:01-Jun-2011	File:279 D P					Page 1
Sample Report:						
es mosth (SG, 1x1)						4.1#+00
100					1009;345.1	7(229);4.16
0.50 1.00	1.50 2.00	2.50	3.0	0 3.50	4.00	4.50
65 154 :346.17 Smooth (90, 1)	1)					8.1.+00
100					1000;345.1	7(229) ;4.16
0.50 1.00	1.50 2.00	2.50	3.0	0 3.50	4.00	4.50
W Detector: TIC Smooth (Mn,	1x1)				88;345.17(1.15 Range: 1.15 220);4.06
0.0						Time
0.50 1.00 Peak Number Compound Time	1.50 2.00 AreaAbs Area %Total	2.50 Width	3.0 Height	0 3.50 Mass Found	4.00	4.50
1 0.47 2 Found 4.05	6e+004 41.91 8e+004 58.09	1	9e+004 6e+005	345.17		
(2) ELSD Signal Smooth (50.	1x1)					3.09

-	2.000						10	04;345.17(228) ;4.14
	0.50	1.00	1.50	2.00	2.50	3.0	0 3.50	4.00	4.50
Pe	ak Number Comp 2 F	ound Time	AreaAbc 3e+002	Area %Total 100.00	Width	Height 3e+003	Mass Found 345.17		

F	eak ID	Compound Found	Time 4.15	Mass Found 345.17				
54	CVLE:	5,1:5,0 2:0	Cime:	4.16)Combine	(244:250-(211:2	134281:203))		8,9e+007
				328.21				
	100	160.02 20	0.09	347.2	5 538.15	713.	46 753.40	
		200.0	0	400.	00	600.00	800.00	1000.00

MS ES+ :TIC Smooth (SG, 1x1) 4.3+1008 93% 341.16(288) 2.65 100 78 1.16 **n**.1 4.50 3.00 3.50 4.00 0.50 1.00 1.50 2.00 2.50 MS MD+ :342.16 Smooth (50, 1x1) 9.5e+007 1009 341.16(28%) 2.41 100 0.50 1.00 1.50 2.00 3.50 4.00 4.50 2.50 3.00 UV Detector: TIC Smooth (Mn, 1x1) 100% 1.917 341.16(288) Range: 1.917 2.53 0.0 0.50 1.00 1.50 0.50 Time AreaAbs 3 4.00 4.50 2.50 3.00 3.50 2.00 Peak Number Compound Time Area %Total Width Height Mass Found 6e+005 2 Found 2.53 100.00 4 2e+005 341.16 (2) HLSD Signal Smooth (SG, 1x1) 100% 42.577 341.16(288) Range: 42.576 2.61 25.000 0.000 2.00 2.50 3.00 3.50 4.00 4.50 Area %Total Width Height Macc Found 100.00 1 4e+004 341.15 0.50 1.00 r Compound Time 1.50 AreaAbg Peak Number Compound Found 2.61 1e+004 Peak ID Compound Time Mass Found 2 Found 2.65 341.16 SAMPLE: 5,1:2,D 2: (Time: 2.41) Combine (140:146-(107:109+177:179)) 1:10 80+ 7.5+1007 100 342.23 532.12 705.43^{737.36} 600.00 800. 364.22 1000.00 800.00 200.00 400.00

Date:01-Jun-2011	File:280 B P	

Page 1

2		Page 1
Date:01-Jun-2011	File:280 D P	
5.		

Characterization of Randomly Selected Library Members

(RS)-N-allyl-2-((SR)-(4-chlorophenyl)(hydroxy)methyl)-N-phenylhexanamide (anti-41).

Following the standard procedure for the synthesis of library compounds, *anti*-41 was obtained as a white solid. ¹H NMR (500 MHz, CD₃CN, 320 K) δ 7.39-7.31 (m, 5H), 7.15 (d, *J* = 8.5 Hz, 2H); 6.88-6.72 (m, 2H), 5.80-5.69 (m, 1H), 5.04 (dd, *J* = 10.0, 1.5 Hz, 1H), 5.00 (dd, *J* = 17.0, 1.5 Hz, 1H), 4.77 (d, *J* = 7.0 Hz, 1H), 4.65-4.61 (m, 1H), 4.34-4.29 (m, 1H), 4.13-4.08 (m, 1H) 2.55-2.51 (m, 1H), 1.71-1.63 (m, 1H), 1.45-1.37 (m, 1H), 1.22-1.08 (m, 4H), 0.80 (t, *J* = 7.0 Hz, 3H) ¹³C NMR (125 MHz, CD₃CN) δ 175.3, 144.2, 142.8, 134.3, 133.5, 130.3, 129.8, 129.2, 129.0, 129.0, 118.1, 75.3, 52.7, 49.1, 31.2, 30.0, 23.3, 14.1

(*RS*)-2-((*SR*)-hydroxy(naphthalen-2-yl)methyl)-*N*-methyl-*N*-phenylhexanamide (*anti*-43). Following the standard procedure for the synthesis of library compounds, *anti*-43 was obtained as a white solid. ¹H NMR (500 MHz, CD₃CN, 320 K) δ 7.92-7.88 (m, 1H), 7.86-7.82 (m, 2H), 7.66 (s, 1H), 7.55-7.48 (m, 2H), 7.31-7.21 (m, 4H), 6.75-6.68 (m, 2H), 4.82-4.78 (m, 2H), 3.10 (s, 3H), 2.74-2.69 (m, 1H), 1.74-1.67 (m, 1H), 1.45-1.38 (m, 1H), 1.22-1.05 (m, 4H), 0.79 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₃CN) δ 175.6, 144.5, 142.9, 134.2,133.9, 130.3, 128.9, 128.8, 128.8, 128.7, 128.6, 127.3, 126.9, 126.0, 125.4, 76.2, 49.0, 37.4, 31.3, 30.1, 12.3, 14.2.

(2*RS*,3*SR*)-3-(4-chlorophenyl)-2-cyclopropyl-3-hydroxy-*N*-(3-methoxyphenyl)-*N*-methylpropanamide (*anti*-50). Following the standard procedure for the synthesis of library compounds, *anti*-50 was obtained as a white solid. ¹H NMR (500 MHz, CD₃CN, 330 K) δ 7.32 (d, *J* = 8.5 Hz, 2H), 7.23 (t, *J* = 8.5 Hz, 1H), 7.18 (d, *J* = 7.5 Hz, 2H), 6.87 (dd, *J* = 8.0, 2.5 Hz, 1H), 6.47-6.37 (m, 2H), 4.83-4.75 (m, 2H), 3.76 (s, 3H), 3.14 (s, 3H), 2.00-1.95 (m, 1H), 1.13-1.06 (m, 1H), 0.44-0.39 (m, 1H), 0.37-0.28 (m, 1H), 0.09-0.00 (m, 1H), -0.21--0.31 (m, 1H); ¹³C

NMR (125 MHz, CD₃CN) δ 174.8, 161.3, 145.4, 144.3, 133.4, 131.1, 129.1, 129.0, 120.8, 114.5, 114.4, 76.3, 56.1, 53.4, 37.4, 13.0, 4.7, 4.1.

(*2RS*,*3SR*)-*N*-ethyl-3-hydroxy-2-methyl-3-(naphthalen-2-yl)-*N*-phenylpropanamide (*anti*-68). Following the standard procedure for the synthesis of library compounds, *anti*-68 was obtained as a white solid. ¹H NMR (500 MHz, CD₃CN, 320 K) δ 7.91-7.87 (m, 1H), 7.85-7.81 (m, 2H), 7.67 (s, 1H), 7.53-7.47 (m, 2H), 7.35-7.24 (m, 4H), 6.79-6.63 (m, 2H), 4.83 (d, *J* = 7.0 Hz, 1H), 4.76-4.71 (m, 1H), 3.64 (dq, *J*= 14.0, 7.0 Hz, 1H), 3.44 (dq, *J*= 14.0, 7.0 Hz, 1H), 2.69-2.62 (m, 1H), 1.09 (d, *J* = 7.0 Hz, 3H), 0.93 (t, *J* = 7.0 Hz, 3H) ; ¹³C NMR (125 MHz, CD₃CN) δ 175.8, 142.9, 142.7, 134.2, 133.9, 130.4, 129.4, 129.0, 128.8, 128.8, 128.6, 127.2, 126.8, 125.8, 125.4, 77.5, 44.5, 43.9, 16.2, 13.2.

(2*RS*,3*SR*)-3-(4-acetylphenyl)-*N*-allyl-3-hydroxy-2-methyl-*N*-phenylpropanamide (*anti*-73). Following the standard procedure for the synthesis of library compounds, *anti*-73 was obtained as a white solid. ¹H NMR (500 MHz, CD₃CN, 320 K) δ 7.91 (d, *J* = 8.5 Hz, 2H), 7.39-7.35 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.92-6.84 (m, 2H), 5.78-5.69 (m, 1H), 5.06-4.96 (m, 2H), 4.69-4.63 (m, 2H), 4.24 (dd, *J* = 15.0, 6.0 Hz, 1H), 4.14 (dd, *J* = 15.0, 6.5 Hz, 1H), 2.69-2.61 (m, 1H), 2.57 (s, 3H), 1.08 (d, *J* = 7.0 Hz, 3H) ; ¹³C NMR (125 MHz, CD₃CN) δ 198.7, 175.8, 150.3, 142.9, 137.4, 134.3, 130.5, 129.4, 129.2, 129.1, 127.4, 117.9, 76.9, 52.5, 43.8, 27.1, 16.1.

5. Additional Product Characterization

X-Ray Structure Determination of 5

Data Collection

An irregular broken fragment $(0.32 \times 0.28 \times 0.24 \text{ mm})$ was selected under a stereomicroscope while immersed in Fluorolube oil to avoid possible reaction with air. The crystal was removed from the oil using a tapered glass fiber that also served to hold the crystal for data collection. The crystal was mounted and centered on a Bruker SMART APEX system at 100 K. Rotation and still images showed the diffractions to be sharp. Frames separated in reciprocal space were obtained and provided an orientation matrix and initial cell parameters. Final cell parameters were obtained from the full data set. A "full sphere" data set was obtained which samples approximately all of reciprocal space to a resolution of 0.75 Å using 0.3° steps in ω using 10 second integration times for each frame. Data was collected at 200 K. Cooling to 100 K resulted in crystal decomposition possibly due to a phase transition. Integration of intensities and refinement of cell parameters were done using SAINT. Absorption corrections were applied using SADABS based on redundant diffractions.⁶

Structure solution and refinement

The space group was determined as P1(bar) based on systematic absences and intensity statistics. Direct methods were used to locate all most C atoms from the E-map. Repeated difference Fourier maps allowed recognition of all expected C, N, O and F atoms. Following anisotropic refinement of all non-H atoms, ideal H-atom positions were calculated. The CF_3 group was disordered into two orientations with occupancies of 0.84 and 0.16, and they were refined as such. Final refinement was anisotropic for all non-H atoms, and isotropic-riding for H atoms. No other anomalous bond lengths or thermal parameters were noted. All ORTEP diagrams have been drawn with 50% probability ellipsoids. Further information is contained in the CIF file.

Equations of interest:

 $\begin{aligned} & \text{R}_{\text{int}} = \Sigma \mid F_o^2 - \langle F_o^2 \rangle \mid / \Sigma \mid F_o^2 \mid & \text{R1} = \Sigma \mid |F_o| - |F_c|| / \Sigma \mid F_o| \\ & \text{wR2} = [\Sigma \left[\text{w} \left(F_o^2 - F_c^2 \right)^2 \right] / \Sigma \left[\text{w} \left(F_o^2 \right)^2 \right] \right]^{1/2} & \text{GooF} = S = [\Sigma \left[\text{w} \left(F_o^2 - F_c^2 \right)^2 \right] / (n-p)^{1/2} \\ & \text{where: } \text{w} = q / \sigma^2 \left(F_o^2 \right) + (aP)^2 + bP; & n = \text{ number of independent reflections;} \\ & \text{q, a, b, P as defined in [5]} & p = \text{number of parameters refined.} \end{aligned}$

⁶ All software and sources of scattering factors are contained in the SHELXTL (version 5.1) program library (G. Sheldrick, Bruker Analytical X-ray Systems, Madison, WI).

Supplementary Figure S3. Crystal structure of compound 5. Both orientations of the CF_3 group are shown.

Supplementary Table S1. Crystal data and structure refinement for compound 5 (CCDC 810238).

Identification Code	Mont01	
CCDC Deposition Number	CCDC 810238	
Empirical formula	$C_{22}H_{26}F_{3}NO_{3}$	
Formula weight	409.44	
Crystallization Solvent	hexanes and ethyl ace	etate
	Data Collection	
Temperature	200 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space Group	P1(bar)	
Unit cell dimensions	a = 10.305(2) Å b = 11.201(3) Å c = 11.779(3) Å	$\alpha = 63.547(4)^{\circ}$ $\beta = 65.449(4)^{\circ}$ $\gamma = 66.927(4)^{\circ}$
Volume	1071.0(4) Å ³	
Z	2	
Density (calculated)	1.270 Mg/m^3	
Absorption coefficient	0.101 mm^{-1}	
F(000)	432	
Crystal size, color, habit	0.32 x 0.28 x 0.24 mm	n, clear, fragment
Theta range for data collection	2.02 - 28.37 °	
Index ranges	$-13 \le h \le 13, -14 \le k$	$\leq 14, -15 \leq l \leq 15$
Reflections collected	13,007	

Independent reflections	$5,170 \ (R_{int} = 0.0243)$
Supplementary Table S1 (cont.) Reflections with $I > 4\sigma(F_o)$	3,057
Absorption correction	SADABS based on redundant diffractions
Max. and min. transmission	1.0, 0.720
Structure S	Solution and Refinement
Refinement method	Full-matrix least squares on F ²
Weighting scheme	w = q $[\sigma^2 (F_o^2) + (aP)^2 + bP]^{-1}$ where: P = $(F_o^2 + 2F_c^2)/3$, a = 0.0821, b = 0.0, q =1
Data / restraints / parameters	5170 / 0 / 293
Goodness-of-fit on F ²	0.927
Final R indices [I > 2 sigma(I)]	R1 = 0.0586, $wR2 = 0.1402$

Largest diff. peak and hole

R indices (all data)

0.927 R1 = 0.0586, wR2 = 0.1402 R1 = 0.0981, wR2 = 0.1594 0.311, -0.196 eÅ⁻³

NMR Spectra of New Compounds

