Supplementary materials

Supplementary Table S1. Fatty acid composition (weight %) of yeast cells expressing genes when feeding with C16:1 $^{\Delta7}$..

Supplementary Table S2. Fatty acid composition (weight %) of yeast cells expressing genes when fed with $C20:4^{\Delta8,11,14,17}$ or $C20:4^{\Delta5,8,11,14}$.

Supplementary Table S3. Fatty acid composition (weight %) of yeast cells expressing CeFAT-1.

Supplementary Fig. S1. Mass spectra of products produced by CeFAT-2. A-D are C16:2, C16:3, C18:2 and C18:3 respectively.

Supplementary Fig. S2. Mass spectra of minor FAME products or their DMOX adducts in yeast cells expressing CeFAT-2 when fed with $C14:1^{\Delta9}$.

A. C14:2^{$\Delta 9,12$}; B. DMOX-C14:2^{$\Delta 9,12$}; C. DMOX-C16:1^{$\Delta 11$}; D. DMOX-C16:2^{$\Delta 11,14$}; E. DMOX-C18:1^{$\Delta 11$}; F. DMOX-C18:1^{$\Delta 13$}; G. DMOX-C18:2^{$\Delta 11,14$}.

Supplementary Fig. S3. Partial GC chromatogram of yeast feeding for CeFAT-2 with C15:0 and mass spectra of products.

A-C, FAMEs of yeast S288C expressing pYES2 vector only, AtFAD2 and CeFAT-2, respectively, fed with C15:0; D, DMOX-C15:1^{$\Delta 9$}; E, DMOX-C17:1^{$\Delta 9$}; F, DMOX-C15:2^{$\Delta 9,12$}; G, DMOX-C17:2^{$\Delta 9,12$}. New desaturated products from AtFAD2 or CeFAT-2 are indicated by arrows.

Supplementary Fig. S4. Mass spectra of new product of the feeding substrate C18:3^{Δ 6,9,12} by CeFAT-2.

A, Mass spectra of new peak C18:4 from CeFAT-2; B, Mass spectra of DMOX adduct of new product C18:4. The new desaturated products from AtFAD2 or CeFAT-2 are indicated by arrows.

Supplementary Fig. S5. Summary of CeFAT-2 substrates used by $\Delta 12$ -desaturation and $\Delta 15$ -desaturation activity. The symbol — indicates no desaturation activity on this fatty acid, while ---> indicates low or trace activity on this fatty acid substrate.

Supplementary Fig. S6. Partial amino acid sequence alignment around His boxes between $\Delta 12$ -desaturases, $\Delta 15$ -desaturases and dual functional desaturases. The conserved His residues in His boxes are in bold. The GenBank accession numbers for the sequences used are, *Arabidopsis thaliana* $\Delta 12$ -desaturase (AtFAD2, P46313), *Mortierella alpine* $\Delta 12$ -desaturase (Ma $\Delta 12$, Q9Y8H5), *Umbelopsis isabellina* $\Delta 12$ -desaturase (Ui $\Delta 12$, P59668), *Claviceps purpurea* $\Delta 12$ -desaturase (Cp $\Delta 12$, ABS18716), *A. thaliana* $\Delta 15$ -desaturase (AtFAD3, P48623), *Caenorhabditis elegans* $\Delta 15$ -desaturase (CeFAT-1, L41807), *C. elegans* $\Delta 12$ -desaturase (CeFAT-2, AF240777), *C. purpurea* $\Delta 12/\Delta 15$ bifunctional desaturase (Cp $\Delta 12/15$, ABS18717), *Fusarium moniliforme* $\Delta 12/\Delta 15$ bifunctional desaturase (Fm $\Delta 12/15$, XP_362963), *Aspergillus nidulans* $\Delta 12/\Delta 15$ bifunctional desaturase (An $\Delta 12/15$, XP_664808), Acanthamoeba castellanii $\Delta 12/\Delta 15$ bifunctional desaturase (Ac $\Delta 12/15$, ABK15557), *Sorghum bicolor* $\Delta 12/\Delta 15$ bifunctional desaturase (Sb $\Delta 12/15$, ABK4557). These sequences are grouped as $\Delta 12$ -desaturase ($\Delta 12$), $\Delta 15$ -desaturase ($\Delta 15$) and bifunctional desaturase (bi). The two critical residues of *C. purpurea* $\Delta 12/\Delta 15$ bifunctional desaturase, V152 and A206,

which were shown to contribute to regiospecificity of the enzyme (Meesapyodsuk *et al.* 2007, J. Biol. Chem. 282:20191-20199) are in red. The residues in CeFAT-2 that may potentially be important to the Δ 15-desaturation in addition to Δ 12-desaturation activity are in blue.