CuII(atsm) protects against peroxynitrite-induced nitrosative damage and prolongs survival in an amyotrophic lateral sclerosis mouse model

Cynthia P.W. Soon^{1,2}, Paul S. Donnelly^{3,4}, Bradley J. Turner⁵, Lin W. Hung^{1,2,4}, Peter J. Crouch^{,1,2,5}, Nicki A. Sherratt^{1,2,4}, Jiang-Li Tan¹, Nastasia K-H Lim^{1,2,5}, Linh Lam², Laura Bica¹, SinChun Lim^{3,4}, James L. Hickey^{3,4}, Julia Morizzi, Andrew Powell⁷, David I. Finkelstein², Janetta G. Culvenor ^{1,5}, Colin L. Masters², James Duce², Anthony R. White^{1,2,5}, Kevin J. Barnham^{1,2,4#}, and Qiao-Xin Li^{1,2,5#}

Supporting Online Material

Group	Pre-symptomatic (140 days)	Symptomatic (200 days)	
Wild-type:			
Vehicle	n=5 (3m,2f)	not included	
Cu ^{II} (atsm)	n=5 (1m,4f)		
SOD1 ^{G93A}			
Vehicle	n=18 (10m,8f)	n=14 (6m,8f)	
Cu ^{II} (atsm)	n=14 (7m,7f)	n=13 (5m,8f)	

Table S1: Mouse cohorts used in the Cu^{II}(atsm) treatment survival study

Table S2. In vivo concentration of Cu^{II}(atsm) 2 hr after gavage

Mouse Strain	Plasma (ng/ml)	Brain (ng/g)	Spinal cord (ng/g)
WT (n=6)	303.6 (21.2)	69.2 (26)	18.8 (9.9)
$SOD1^{G93A}$ (n=3)	331.9 (9.5)	67.2 (13.5)	15.1 (3.2)

Data are expressed as mean with % standard deviation. No detectable Cu^{II}(atsm) was found in mice gavaged with the vehicle.

Supplementary figure legend

Figure S1. ONOO⁻ has neither any interference at 400 nM (absorbance of pyrogallol) **(A)** nor pyrogallol oxidation itself **(B)**. SOD activity was measured as the ability to inhibit pyrogallol oxidation determined by absorbance at 400 nm after one hr incubation as in

Fig 1. $Cu^{II}(atsm)$ also does not have any effect on pyrogallol oxidation (C). ONOO⁻ was able to inhibit the action of SOD1 (10 U/mL) in a dose dependent manner (D).

Figure S2. Effect of $Cu^{II}(atsm)$ on the wild-type (WT) mice dosed at 30mg/kg from 140 days of age till the end of the SOD1^{G93A} mice trial as Fig 2. (A). Percentage of weight changes over initial weight. (B). Rotarod test over the period of the trial. There is no difference between the vehicle and $Cu^{II}(atsm)$ treated mice, indicating that the $Cu^{II}(atsm)$ is well toleranced.

Figure S3. (A) A western blot of SOD1 in the 230 days mouse spinal cord homogenates. (B) Quantitation of the SOD1 level. No change in the SOD1 levels was detected between vehicle and Cu^{II}(atsm) treated SOD1^{G93A} mice.

Suppl Figure 1

Supplementary Figure 3

