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S1. Detailed description of the models and parameters used.

Parameter estimation

Diffusion coefficients : Dn, DP , DG

Dn : For EC cells migrating in a culture containing angiogenic factor, Stokes and Lauffenburger [1]
measured the diffusion coefficient to be 7 × 10−9 cm2/s. A ‘typical’ animal’s cell motility coefficient has
been estimated to be 5 × 10−10 cm2/s [2]. A smaller value, 10−10 cm2/s, was used in [3]. While the
experimental results for motility of human glioma [4] and glioblastoma cells [5] in 2D substrate suggest
a value of Dn in the range of 1.16×10−10-2.31×10−9 cm2/s, Stein et al. [6] used a 10-fold higher value
of Dn (=2.31×10−8 cm2/s) in order to get a better fit to the experimental data. Burgess et al. [7] took
Dn=1.7 × 10−9 cm2/s, but Sander and Deisboeck [8] argued that Dn should be much smaller, namely,
10−12 cm2/s. We shall take Dn=10−11 cm2/s.

DP : In experiments of the movement of MMP-1 in the collagen fibril, Saffarian et al. [9] estimated the
diffusion coefficient to be (8±1.5)×10−9 cm2/s for wild-type activated MMP-1 and (6.7±1.5)×10−9 cm2/s
for inactive mutant. In our simulation, we take DP = 5 × 10−11 cm2/s.

DG : The diffusion coefficient of G was measured as 6.7 × 10−7 cm2/s in the brain [10] and 1.3 ×
10−6 cm2/s in collagen gel [11]. The diffusion coefficient in a growing tumor spheroid or aggregate is
much smaller than the one in the medium, and so we take DG = 2.31 × 10−7 cm2/s.

chemo/hapto-taxis coefficients : χn, χ
1
n

In the presence of EGF, glioma cells travelled a distance 0.4-0.5cm in 150 hrs [12]; glioma cells in agar
containing EGF travelled faster, covering a distance of 1.25cm in 150 hrs, while in plain agar they travelled
only 0.75cm during the same period. In experiments with U87MGmEGFR spheroid growth, Deisboeck
et al. [13] calculated the cell velocity to be in the range of 50−110 µm/24h. Kim et al. [14] assumed that
gradient of the glucose concentration was 3× 10−3 − 10−4 g/cm4 and a drift velocity 25− 110 µm/24h of
mobile cells to compute an intermediate value of χn = velocity

gradient = 2.76 × 10−4 cm5/(g.s). In this paper,
we assume that the chemotactic sensitivity is relatively small due to the fluctuating glucose level. We
take χn=1.86 × 10−7 cm5g−1s−1.
For the haptotactic sensitivity, we take χ1

n = 4.17 × 10−5 cm5/(g.s).

other parameters

In the next subsection we shall determine reference values n∗, ρ∗, P ∗, G∗ for n, ρ, P,G.
λ11 (tumor cell proliferation) : Doubling time were in the range from 27h (U87MG) to 60h (LN405)

for human glioma cells [15]; this translates into proliferation rate of (7.1 − 8) × 10−6s−1. Measured
value of proliferation rate were reported as 1/day, or 8 × 10−6s−1, in typical experiments of Sander and
Deisboeck [8]. Taking into consideration that large flux of glucose being supplied periodically in our
system, we take λ11=1.112 × 10−4 s−1.

λ31 (MMP production) : It is difficult to measure the MMP production rate directly. The range of
(1.11 − 6.94) × 10−8 s−1 was estimated in [14] for sparse migrating cells. The MMP production rate,
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written as λ(n, ρ), was modeled by λ31n in [14] where λ31 = 6.94 × 10−8 s−1. Here, we model it as
λ31nρ, because ρ is expected to oscillate quite significantly. In order to adjust to the order of magnitude
of MMP production in [14], we take an estimated value, λ31 = 6.95 × 10−5 cm3g−1s−1; see also [15].

λ32 (decay rate of MMP) : MMP is secreted by a tumor cell and is highly localized (fast decay) in the
invading front of migrating tumor cells. We assume half-life of MMP to be very short (approximately 3.8
h) so that λ32 = 5.0 × 10−5 s−1.

λ41 (consumption rate parameters) : Nutrient consumption rate was measured as α = 1.6 pg/cell/min
in [16]. We compute λ41 from λ41G

† = α when G† = 8.9×10−4 g/cm3 is between high (4.5×10−3 g/cm3)
and low (3.0 × 10−4 g/cm3). Hence, λ41 = α

G†
= 0.3 cm3/(g.s).

Table 2 summarizes all the above parameter values.

Nondimensionalization

Tumor module

Table 3 lists reference values. We take T = 1 hour and L = 1.0 mm, so that so that D = L2

T =
2.78 × 10−6 cm2/s. We determine the reference values for n, ρ, P,G as follows:

n∗ : We take n∗=1×10−3 g/cm3. This is based on Chicoine et al. [12] who plated human glioma cells
with density 2.5-5×105 cells/ml in agar gel to investigate the cell migration in the presence of growth
factors.

ρ∗ : The main ECM component is collagen. Kaufman et al. (2005) investigated several patterns of
different collagen I concentrations, and estimated ρ to be 0.5-2.0 mg/ml for glioma spheroids of diameter
∼ 200µm. Stein et al. (2007) reported on experiments where U87 and U87∆EGFR were implanted into
collagen I of concentration of 2.6 mg/ml. We take ρ∗=1.0 × 10−3 g/cm3 as our reference value of ECM
as in [14].

P ∗ : Recently, it was observed that PCK3145 has the ability to downregulate MMP-9 level for prostate
cancer patients with high levels of MMP-9 > 100 µg/l [17]. We take P ∗ = 1.0 × 10−7 g/cm3 as in [14].

G∗ : Sander and Deisboeck (2002) [8] used the characteristic concentration of glucose 2×10−4 g/cm3,
and took the boundary condition 6 × 10−4 g/cm3 for glucose concentration far from the tumor (see
also [13]). In [18], high (4.5 g/l = 4.5 × 10−3 g/cm3) and low (0.3 g/l = 3.0 × 10−4 g/cm3) glucose
levels were introduced. We take this high value as a reference value so that dimensionless value of glucose
(G = 1) corresponds to the high glucose level.

We nondimensionalize the variables and parameters in the partial differential equations (11)-(14) as
follows:

t̄ =
t

T
, x̄ =

r

L
, n̄ =

n

n∗
, n̄0 =

n0

n∗
, Ḡ =

G

G∗
, ρ̄ =

ρ

ρ∗
, ρ̄0 =

ρ0

ρ∗
, P̄ =

P

P ∗
,

D̄n =
Dn

D
, D̄P =

DP

D
, D̄G =

DG

D
, λ̄11 = Tλ11, λ̄21 = Tλ21P

∗,

λ̄22 = λ22T, λ̄31 =
λ31Tn

∗ρ∗

P ∗
, λ̄32 = Tλ32, λ̄41 = Tλ41n

∗, λ̄42 =
Tλ42

G∗
,

χ̄n =
χnG

∗T

L2
, χ̄1

n =
χ1
nρ
∗T

L2
.

We choose λG and λρ such that λ̄G = λ̄ρ = 1. If we drop the bar (“-”) in the new variables and
parameters, then the differential equations remain unchanged.
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Internal dynamics module

In order to mathematically model the dynamical network shown in Figure 3 the dimensional version of
the dynamical system for the internal dynamics was derived as follows:

dm

dt
= g +

Λ1Λ2
2

Λ2
2 + Λ5a2

− µ1m,

da

dt
= s+

Λ3Λ2
4

Λ2
4 + Λ6m2

− µ2a,

where m(t) and a(t) are concentrations of miR-451 and the AMPK complex at time t, s is source
of the complex, g is the glucose level within the experimental system, Λ1 and Λ3 are the autocatalytic
enhancement parameters for miR-451 and the complex respectively, Λ2 and Λ5 are the Hill-type inhibition
saturation parameters from the counter part of miR-451 and the complex respectively, Λ5 is the inhibition
strength of miR-451 by the complex, Λ6 is the inhibition strength of the complex by miR-451, µ1 and µ2

are the decay rates of miR-451 and the complex respectively.
The following dimensionalization was performed to get the dimensionless key control equations in the

main section

T = µ1t, M =
m

m∗
, A =

a

a∗
, G =

g

µ1m∗
, S =

s

µ2a∗
, k1 =

Λ1

µ1m∗
,

k2 = Λ2, k3 =
Λ3

µ2a∗
, k4 = Λ4, α = Λ5(a∗)2, β = Λ6(m∗)2, ε =

µ1

µ2
.

miRs are typically more stable than their targets [19, 20] and the parameter ε is small [21]. Typical
half-life of AMPK is measured to be 6 h [22] (µ2 ∼ 0.12h−1) while the half-life of a miRNA is much
larger 101-225 h in a recent study [23]. We take a slightly larger half-life of miR-451, 290 h, leading to
µ1 = 0.0024 h−1 and ε = µ1

µ2
= 0.02. miRNA concentrations in an animal cell (assuming 1000-25,000

µm3 volume) were estimated to be 80 pM − 2.2 µM [24] and we take our reference value m∗ = 1.0 µM .
Based on the high (4.5 g/l) and low (0.3 g/l) glucose level in [18] and m∗, we estimate glucose supply
rate through several pathways g = (2.4 × 10−5 − 2.4 × 10−3) µM/h resulting in a range of dimensionless
glucose input levels G = g

µ1m∗
= 0.01 − 1.0. AMPK concentration was measured as 35-150 nM in rat

liver [25] and we take a∗ = 100nM . We take the signal source of the AMPK complex, s = 2.4 nM/h
leading to S = s

µ2a∗
= 0.2. The autocatalytic rate (Λ1) of miR-451 is assumed to be 4-fold larger than

its negative contribution (µ1m
∗) from its decay in the absence of inhibition pathway from the AMPK

module, k1 = Λ1

µ1m∗
= 4.0 (Similarly for its counterpart, the AMPK complex, we take k3 = Λ3

µ2a∗
= 4.0).

The Hill-type dimensionless parameters Λ2,Λ4 (and their corresponding k2, k4 without change) are fixed
to be equal to 1. Finally, the inhibition strength (α = 1.6) of miR-451 by the AMPK complex was
assumed to be a bit stronger than the inhibition strength (β = 1.0) of the AMPK complex by miR-451.

Table 1 summarizes all the above parameter values for the internal dynamics model (1)-(2).
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