Supporting Information

for

Potentiometric Sensors Based on Fluorous Membranes Doped with Highly Selective Ionophores for CO_3^2

Li D Chen1 , Debaprasad Mandal2 , Gianluca Pozzi3 , John A Gladysz2 , Philippe Bühlmann,1*

¹Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis MN 55455,

USA, ²Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842,

3 CNR-Istituto di Scienze Tecnologie Molecolari, via Golgi 19, 20133, Milano, Italy.

Email Address: buhlmann@umn.edu

Figure S1. MALDI-TOF mass spectrum of fluorophilic salt **1**.

Table S1. CO_3^2 Selectivities ($log K_{co_3^2, J}^{pot}$) of Conventional Ionophore-

Doped ISEs and Fluorous Ionophore-doped ISEs with Perfluoroperhydrophenanthrene as Membrane Matrix

a Ionophore: heptyl 4-trifluoroacetylbenzoate¹; ^b fluorophilic ionophore **Mn-1** (1.5 mM) and cationic sites, **1** (1.0 mM); *^c* fluorophilic ionophore **Mn-2** (4.0 mM) and anionic sites, **2** (1.0 mM)

Table S2. BPh_4^+ Selectivities ($log K_{Bph_3,J}^{pot}$) of Fluorous Ionophore-Free Ion-Exchanger Membranes and Fluorous Ionophore-Doped Membranes with Perfluoroperhydrophenanthrene as Membrane Matrix.

When determined with respect to a noncomplexing ion such as tetraphenylborate, the selectivity of an ionophore-based ISE membrane for an ion that forms a complex with the ionophore can be used to determine the binding constant of the ion–ionophore complex. The relevant theory has been reported in the literature.²⁻⁶ Here, binding constants are derived considering a rather complicated case in which the ionophores can function as both positively and negatively charged ionophores.

According to the phase boundary potential model, the selectivity coefficient for an ionophore-free ion-exchanger membrane $K_{JI}^{pot}(I E)$ is given by⁷

$$
K_{J}^{pot}(I E) = \frac{[J^-(J)]^z}{K_{JI}[I^{z-}(I)]}
$$
\n(S1)

where I^{z} is the anion of charge z that the ionophore can bind (in our case, CO_3^{2}), and J^{-} is the reference ion that we assume not to interact with the ionophore (BPh_4) . $[I^{z-}(I)]$ and $[J^{-}(J)]$ refer to free ion concentrations in the membrane phase when there is only one kind of the two anions, I^{z-} or J^{-} , present in the membrane, and K_{IJ} is the equilibrium constant for the exchange of I^{z} and J^{-} between the membrane and the sample phase. Since there is no ionophore in the membrane, $[J⁻(J)]$ equals R_T , the total concentration of ionic site in the ion exchanger membrane, while $[I^{z+}(I)]$ equals R_T / z .

$$
K_{JI}^{pot}(IE) = \frac{zR_{I}^{z}}{K_{JI}R_{I}}
$$
\n(S2)

In the same way, we can get the selectivity coefficient of the equivalent membrane doped with positively charged ionophore, which is given by

$$
K_{JI}^{pot}(L) = \frac{(L_{tot}^+ + z_R [R_I^{z_R}])^z}{K_{JI}[I^{z-}(I)]}
$$
\n(S3)

where L_{tot}^+ is the total concentration of ionophore and $[R_T^{z_R}]$ is the total concentration of ionic sites with a charge sign of z_n in the membrane. Assuming that $J⁻$ does not bind to the ionophore, $[J⁻(J)]$ is equal to L_{tot}^+ + $z_R[R_T^{z_R}]$. Combining equations S2 and S3 gives

$$
[I^{z-}(I)] = \frac{(L_{tot}^+ + z_R[R_T^{z_R}])^z}{zR_T} \frac{K_{JI}^{pot}(IE)}{K_{JI}^{pot}(L)}
$$
(S4)

Since more specific situations are of particular interest here , I^{2-} (representing $CO₃²$) will be used for following discussion. Panel A in Figure 4 of the associated full paper shows that in the membrane with an anionic site-to-ionophore ratio of 1:4, the dominant complex is $L_2^{\dagger}I^{2-}$. Thus, the cumulative binding constant, β_{II_2} , is given by

$$
\beta_{IL_2} = K_{L^+ - I^{z-}} K_{L^+ I^{z-} - L^+} = \frac{[L_2^+ I^{z-}]}{[L^+]^2 [I^{z-}]}
$$
\n(S4)

where $[L^{\dagger}]$ is the concentration of free ionophore in the membrane.

!
! Since there is a large excess of L^+ in an ideally selective membrane, the concentration of 1:1 stoichiometry complex of ionophore and the anion, $L^{\dagger}I^{2-}$, resulting from dissociation of $L^{\dagger}I^{2-}$, is very low. Thus, we can assume that $[L^{\dagger} I^{2-}]$ is ≈ 0 M. From the mass and charge balance in the membrane, $[L_2^{\dagger} I^{2-}]$ and $[L^{\dagger}]$ can be expressed by

$$
[L_2^{\dagger}I^{\zeta-}] = [L_{tot}^{\dagger}] - [R_T^-] - 2[I^{2-}]
$$
\n(S5)

and

$$
[L^+] = 2[I^{2-}] + [R_T^-]
$$
 (S6)

Combining equations S4, S7, and S8 gives

$$
\beta_{IL_2} = \frac{[L_{tot}^+] - [R_T^-] - 2[I^{2-}]}{(2[I^{2-}] + [R_T^-])^2[I^{z-}]}
$$
\n(S7)

Substituting $[I^{z+}]$ as calculated from Equation S4 into Equation S7, the binding constant β_{II_2} is obtained.

In the ionophore-based membranes with a cationic site-to-ionophore ratio of 2:3, complexes of the

type $L_2^2 I^{2-}$ and $L^2 I^{2-}$ coexist. Using β_{IL_2} and the mass and charge balance in the membrane to solve for $[L^{\dagger}]$ gives

$$
[L^+] = \frac{-2 + \sqrt{4 - 4\beta_{H_2}[I^{2-}]([R_T^+] - [L_{tot}^+] - 2[I^{2-}])}}{2\beta_{H_2}[I^{2-}]}
$$
(S8)

Expressions for $[L_1^*I^{2-}]$ and $[L^*I^{2-}]$ can now be obtained by insert of $[I^{2+}]$ from equation S4 and $[L^*]$ from equation S8 into the following two equatons:

$$
[L_2^{\dagger}I^{2-}] = [L_{tot}^+] - [R_T^+] + 2[I^{2-}] - 2[L^+]
$$
\n(S9)

$$
[L^{\dagger}I^{2-}] = [L^{\dagger}] - [R_T^{\dagger}] - 2[I^{2-}] \tag{S10}
$$

Note that the resulting expressions for $[L_2^T I^{2-}]$ and $[L^T I^{2-}]$ are very lengthy, and are therefore not reproduced here. The same applies for several other expressions shown in the following.

With expressions for $[L^+]$, $[I^{2+}]$, $[L^+I^{2-}]$ and $[L_2^+I^{2-}]$ known, $K_{L^+I^{2-}}$ and $K_{L^+I^{2-}-L^+}$ can be calculated from

$$
K_{L^+\!-\!I^{2-}} = \frac{[L^+I^{2-}]}{[L^+][I^{2-}]}
$$
\n(S11)

and

$$
K_{L^+L^{2-}-L^+} = \frac{[L_2^+L^{2-}]}{[L^+][L^+L^{2-}]} \tag{S12}
$$

Complexes of the type $L^{\dagger} I_2^{2-}$ (i.e., one ionophore bound to two CO_3^2) are formed in the membranes with 4:3 cationic site-to-ionophore ratio. The binding constant, $K_{L^2}I^{2-1/2-1}$, is given by

$$
K_{L^{\dagger}I^{2-}-I^{2-}} = \frac{[L^{\dagger}L_2^{2-}]}{[I^{2-}][L^{\dagger}L^{2-}]} \tag{S13}
$$

In membranes with this ionic site-to-ionophore ratio (see panel A, Figure 4, of the associated full paper), $[L^+I_2^{2-}]$ and $[L^+I^{2-}]$ are the dominant species and one may assume that $[L^+]$ is equal to ≈ 0 M. Therefore, the mass balance and charge balance in the membrane can be used to give $[L^{\dagger}I_2^{2-}]$ as

$$
[L^+I_2^{2-}] = \frac{[R^+_r] - [L^+_{tot}] - 2[I^{2-}]}{2}
$$
\n(S14)

and $[L^{\dagger} I^{2-}]$ is given by

$$
[L^+I^{2-}] = \frac{3[L^+_{tot}] - [R^+_r] + 2[I^{2-}]}{2}
$$
\n(S15)

Substituting equations S4, S14 and S15 into equation S13 gives the binding constant $K_{L^+L^2-I^2}$.

The mechanism of the super-Nernstian responses exhibited by the membranes with a 1:4 ratio of anionic sites and ionophore was further confirmed by the fact that at low pH, these electrodes exhibited nearly Nernstian responses of about 50 mV/decade for SCN at high concentrations from 10^{-1} to 10^{-3} (where a majority of the ionophore forms [LSCN] complexes) and slopes of -87 mV/decade and -71 mV/decade for **Mn-1** and **Mn-2** for SCN concentrations in the range from $10^{-3.5}$ to $10^{-4.5}$ M (where the ionophore forms 1:2 and 1:1 or $[L_n(OH)_{n-1}]^+$ complexes and no free ionophore is left in the membranes.

Figure S2. Potentiometric SCN⁻ response of an ISE based on a liquid membrane with perfluoroperhydrophenanthrene doped with: (1) 4.0 mM ionophore **Mn-1** and 1.0 mM anionic sites, **2**;(2) 4.0 mM ionophore **Mn-2** and 1.0 mM anionic sites, **2** at (A) pH=6.20 and (B) pH=3.50.

References

- 1. Behringer, C.; Lehmann, B.; Haug, J.-P.; Seiler, K.; Morf, W. E.; Hartman, K.; Simon, W. *Anal. Chim. Acta* **1990**, *233*.
- 2. Bakker, E.; Pretsch, E. *J. Electrochem. Soc.* **1997**, *144*, L125.
- 3. Bakker, E.; Pretsch, E. *Anal. Chem.* **1998**, *70*, 295.
- 4. Ceresa, A.; Pretsch, E. *Anal. Chim. Acta.* **1999**, *395*, 41.
- 5. Boswell, P. G.; Szıjjarto , C.; Jurisch, M.; Gladysz, J. A.; Rabai, J. *Anal. Chem.* **2008**, *80*, 2084- 2090.
- 6. Lai, C.-Z.; Reardon, M. E.; Boswell, P. G.; Bühlmann, P. *J. Fluor. Chem.* **2010**, *131*, 42-46.
- 7. Bühlmann, P.; Pretsch, E.; Bakker, E. *Chem. Rev.* **1998**, *98*, 1593-1687.