Supporting Information

for

Potentiometric Sensors Based on Fluorous Membranes Doped with Highly Selective Ionophores for CO₃²⁻

Li D Chen¹, Debaprasad Mandal², Gianluca Pozzi³, John A Gladysz², Philippe Bühlmann^{*,1}

¹Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis MN 55455,

USA, ²Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842,

³CNR-Istituto di Scienze Tecnologie Molecolari, via Golgi 19, 20133, Milano, Italy.

Email Address: buhlmann@umn.edu

Figure S1. MALDI-TOF mass spectrum of fluorophilic salt 1.

Table S1. $\text{CO}_3^{2^-}$ Selectivities $(\log K_{ca_3^{2^-},J}^{pot})$ of Conventional Ionophore-

Doped ISEs and Fluorous Ionophore-doped ISEs with Perfluoroperhydrophenanthrene as Membrane Matrix

10n J	Conventional	Fluorous ISE	Fluorous ISE	
	ISE ^a	No. 1 (Mn-1) ^{<i>b</i>}	No. 2 (Mn-2) ^{<i>c</i>}	
Cl	-4.80	-6.87 ± 0.26	-5.46 ± 0.21	
Br⁻	-3.50	-4.97 ± 0.26	-6.90 ± 0.22	
NO_3^-	-1.60	-5.13 ± 0.17	-6.58 ± 0.20	
SCN	0.70	-1.59 ± 0.16	-2.78 ± 0.20	
Sal⁻	3.80	-2.19 ± 0.27	-2.36 ± 0.28	

CO ₃ ²⁻ Selectivities	$(\log K_{co_{3}^{2^{-}},J}^{pot})$
---	-------------------------------------

^{*a*} Ionophore: heptyl 4-trifluoroacetylbenzoate¹; ^{*b*} fluorophilic ionophore **Mn-1** (1.5 mM) and cationic sites, **1** (1.0 mM); ^{*c*} fluorophilic ionophore **Mn-2** (4.0 mM) and anionic sites, **2** (1.0 mM)

Table S2. BPh_4^+ Selectivities $(\log K_{BPh_3^-,J}^{pot})$ of Fluorous Ionophore-Free Ion-ExchangerMembranesandFluorousIonophore-DopedMembraneswithPerfluoroperhydrophenanthrene as Membrane Matrix.

Membrane Composition		BPh_4^+ Selectivities $(\log K_{BPh_3^-,J}^{pot})$			
ionophore	Ionic sites	CO ₃ ²⁻	SCN	OH.	
none	1 (2 mM)	-9.90 ± 0.10	-5.80 ± 0.10	-10.93 ± 0.16	
Mn-1 (1.5 mM)	1 (1 mM)	-4.27 ± 0.11	-5.07 ± 0.05	-3.74 ± 0.08	
Mn-1 (1.5 mM)	1 (2 mM)	-8.65 ± 0.16	-5.85 ± 0.13	-7.05 ± 0.15	
Mn-1 (4.0 mM)	2 (1 mM)	-1.86 ± 0.06	-0.22 ± 0.08	0.71 ± 0.09	
Mn-2 (1.5 mM)	1 (1 mM)	-6.02 ± 0.09	-5.79 ± 0.05	-4.07 ± 0.05	
Mn-2 (1.5 mM)	1 (2 mM)	-7.08 ± 0.15	-5.81 ± 0.13	-5.55 ± 0.25	
Mn-2 (4.0 mM)	2 (1 mM)	-0.11 ± 0.08	-1.50 ± 0.05	3.50 ± 0.09	
Mn-3 (4.0 mM)	2 (1 mM)	2.39 ± 0.05	-1.88 ± 0.10	0.75 ± 0.10	

When determined with respect to a noncomplexing ion such as tetraphenylborate, the selectivity of an ionophore-based ISE membrane for an ion that forms a complex with the ionophore can be used to determine the binding constant of the ion–ionophore complex. The relevant theory has been reported in the literature.²⁻⁶ Here, binding constants are derived considering a rather complicated case in which the ionophores can function as both positively and negatively charged ionophores.

According to the phase boundary potential model, the selectivity coefficient for an ionophore-free ion-exchanger membrane $K_{II}^{pot}(IE)$ is given by⁷

$$K_{JI}^{pot}(IE) = \frac{[J^{-}(J)]^{z}}{K_{JI}[I^{z-}(I)]}$$
(S1)

where I^{z^-} is the anion of charge z that the ionophore can bind (in our case, $CO_3^{2^-}$), and J^- is the reference ion that we assume not to interact with the ionophore (BPh₄⁻). $[I^{z^-}(I)]$ and $[J^-(J)]$ refer to free ion concentrations in the membrane phase when there is only one kind of the two anions, I^{z^-} or J^- , present in the membrane, and K_{IJ} is the equilibrium constant for the exchange of I^{z^-} and J^- between the membrane and the sample phase. Since there is no ionophore in the membrane, $[J^-(J)]$ equals R_T , the total concentration of ionic site in the ion exchanger membrane, while $[I^{z^+}(I)]$ equals R_T/z .

$$K_{JI}^{pot}(IE) = \frac{zR_T^{\ z}}{K_{JI}R_T}$$
(S2)

In the same way, we can get the selectivity coefficient of the equivalent membrane doped with positively charged ionophore, which is given by

$$K_{JI}^{pot}(L) = \frac{(L_{tot}^{+} + z_R[R_T^{z_R}])^z}{K_{JI}[I^{z_-}(I)]}$$
(S3)

where L_{tot}^+ is the total concentration of ionophore and $[R_T^{z_R}]$ is the total concentration of ionic sites with a charge sign of z_R in the membrane. Assuming that J^- does not bind to the ionophore, $[J^-(J)]$ is equal to $L_{tot}^+ + z_R[R_T^{z_R}]$. Combining equations S2 and S3 gives

$$[I^{z-}(I)] = \frac{(L_{tot}^{+} + z_R[R_T^{z_R}])^z}{zR_T} \frac{K_J^{pot}(IE)}{K_J^{pot}(L)}$$
(S4)

Since more specific situations are of particular interest here, I^{2-} (representing CO₃²⁻) will be used for following discussion. Panel A in Figure 4 of the associated full paper shows that in the membrane with an anionic site-to-ionophore ratio of 1:4, the dominant complex is $L_2^+I^{2-}$. Thus, the cumulative binding constant, β_{IL_2} , is given by

$$\beta_{IL_2} = K_{L^+ - I^{z-}} K_{L^+ I^{z-} - L^+} = \frac{[L_2^+ I^{z-}]}{[L^+]^2 [I^{z-}]}$$
(S4)

where $[L^+]$ is the concentration of free ionophore in the membrane.

Since there is a large excess of L^+ in an ideally selective membrane, the concentration of 1:1 stoichiometry complex of ionophore and the anion, L^+I^{2-} , resulting from dissociation of $L_2^+I^{2-}$, is very low. Thus, we can assume that $[L^+I^{2-}]$ is ≈ 0 M. From the mass and charge balance in the membrane, $[L_2^+I^{2-}]$ and $[L^+]$ can be expressed by

$$[L_2^+ I^{z-}] = [L_{tot}^+] - [R_T^-] - 2[I^{2-}]$$
(S5)

and

$$[L^+] = 2[I^{2-}] + [R_T^-]$$
(S6)

Combining equations S4, S7, and S8 gives

$$\beta_{IL_2} = \frac{[L_{tot}^+] - [R_T^-] - 2[I^{2-}]}{(2[I^{2-}] + [R_T^-])^2[I^{2-}]}$$
(S7)

Substituting $[I^{z+}]$ as calculated from Equation S4 into Equation S7, the binding constant β_{IL_2} is obtained.

In the ionophore-based membranes with a cationic site-to-ionophore ratio of 2:3, complexes of the

type $L_2^+ I^{2-}$ and $L^+ I^{2-}$ coexist. Using β_{IL_2} and the mass and charge balance in the membrane to solve for $[L^+]$ gives

$$[L^{+}] = \frac{-2 + \sqrt{4 - 4\beta_{IL_2}[I^{2-}]([R_T^{+}] - [L_{tot}^{+}] - 2[I^{2-}])}}{2\beta_{IL_2}[I^{2-}]}$$
(S8)

Expressions for $[L_2^+I^{2-}]$ and $[L^+I^{2-}]$ can now be obtained by insert of $[I^{2+}]$ from equation S4 and $[L^+]$ from equation S8 into the following two equatons:

$$[L_2^+ I^{2^-}] = [L_{tot}^+] - [R_T^+] + 2[I^{2^-}] - 2[L^+]$$
(S9)

$$[L^{+}I^{2-}] = [L^{+}] - [R_{T}^{+}] - 2[I^{2-}]$$
(S10)

Note that the resulting expressions for $[L_2^+I^{2-}]$ and $[L^+I^{2-}]$ are very lengthy, and are therefore not reproduced here. The same applies for several other expressions shown in the following.

With expressions for $[L^+]$, $[I^{2+}]$, $[L^+I^{2-}]$ and $[L_2^+I^{2-}]$ known, $K_{L^+I^{2-}}$ and $K_{L^+I^{2-}-L^+}$ can be calculated from

$$K_{L^{+}-I^{2-}} = \frac{[L^{+}I^{2-}]}{[L^{+}][I^{2-}]}$$
(S11)

and

$$K_{L^{+}I^{2-}-L^{+}} = \frac{[L_{2}^{+}I^{2-}]}{[L^{+}][L^{+}I^{2-}]}$$
(S12)

Complexes of the type $L^+ I_2^{2-}$ (i.e., one ionophore bound to two CO_3^{2-}) are formed in the membranes with 4:3 cationic site-to-ionophore ratio. The binding constant, $K_{L^+ I^{2-} - I^{2-}}$, is given by

$$K_{L^{+}I^{2-}-I^{2-}} = \frac{[L^{+}I_{2}^{2-}]}{[I^{2-}][L^{+}I^{2-}]}$$
(S13)

In membranes with this ionic site-to-ionophore ratio (see panel A, Figure 4, of the associated full paper), $[L^+I_2^{2-}]$ and $[L^+I_2^{2-}]$ are the dominant species and one may assume that $[L^+]$ is equal to ≈ 0 M. Therefore, the mass balance and charge balance in the membrane can be used to give $[L^+I_2^{2-}]$ as

$$[L^{+}I_{2}^{2-}] = \frac{[R_{\tau}^{+}] - [L_{tot}^{+}] - 2[I^{2-}]}{2}$$
(S14)

and $[L^+I^{2-}]$ is given by

$$[L^{+}I^{2-}] = \frac{3[L_{tot}^{+}] - [R_{T}^{+}] + 2[I^{2-}]}{2}$$
(S15)

Substituting equations S4, S14 and S15 into equation S13 gives the binding constant $K_{L^+l^{2-}-l^{2-}}$.

The mechanism of the super-Nernstian responses exhibited by the membranes with a 1:4 ratio of anionic sites and ionophore was further confirmed by the fact that at low pH, these electrodes exhibited nearly Nernstian responses of about 50 mV/decade for SCN⁻ at high concentrations from 10^{-1} to 10^{-3} (where a majority of the ionophore forms [LSCN]⁻ complexes) and slopes of -87 mV/decade and -71 mV/decade for **Mn-1** and **Mn-2** for SCN⁻ concentrations in the range from $10^{-3.5}$ to $10^{-4.5}$ M (where the ionophore forms 1:2 and 1:1 or [L_n(OH)_{n-1}]⁺ complexes and no free ionophore is left in the membranes.

Figure S2. Potentiometric SCN⁻ response of an ISE based on a liquid membrane with perfluoroperhydrophenanthrene doped with: (1) 4.0 mM ionophore Mn-1 and 1.0 mM anionic sites, 2;(2)
4.0 mM ionophore Mn-2 and 1.0 mM anionic sites, 2 at (A) pH=6.20 and (B) pH=3.50.

References

- Behringer, C.; Lehmann, B.; Haug, J.-P.; Seiler, K.; Morf, W. E.; Hartman, K.; Simon, W. Anal. Chim. Acta 1990, 233.
- 2. Bakker, E.; Pretsch, E. J. Electrochem. Soc. 1997, 144, L125.
- 3. Bakker, E.; Pretsch, E. Anal. Chem. 1998, 70, 295.
- 4. Ceresa, A.; Pretsch, E. Anal. Chim. Acta. 1999, 395, 41.
- Boswell, P. G.; Szıjjarto , C.; Jurisch, M.; Gladysz, J. A.; Rabai, J. Anal. Chem. 2008, 80, 2084-2090.
- 6. Lai, C.-Z.; Reardon, M. E.; Boswell, P. G.; Bühlmann, P. J. Fluor. Chem. 2010, 131, 42-46.
- 7. Bühlmann, P.; Pretsch, E.; Bakker, E. Chem. Rev. 1998, 98, 1593-1687.