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METHOD DETAILS
We considered m summary statistics S1(Xi), . . . , Sm(Xi) (i =
1, . . . , n with n the number of individuals) and assumed that each
individual is either normal or an outlier, which we indexed by
Zi ∈ {0, 1}. The joint distribution of the m summary statistics is
supposed to be described by independent Gaussian distributions in
both the normal and outlier class:

Sj(Xi)|Zi, µZi,j , σ
2
Zi,j ∼ N(µZi,j , σ

2
Zi,j)

Gibbs sampling with uninformative priors
It is possible to specify uninformative priors for most of the nuisance
parameters of the Gibbs sampling by assuming

P (Z, µ, σ2
0) = P (Z)P (µ)P (σ2

0) ∝ σ−2
0

As described in the main paper, we also assumed (with λ a
parameter fixed a priori)

P (σ2
1,j |Z, µj , σ

2
0,j) = P (σ2

1,j |σ2
0,j) =

{
1 if σ2

1,j = λ2 σ2
0,j

0 otherwise

and

P (σ2
0,j |Sj(X), Z, µ0,j , µ1,j) ≈ P (σ2

0,j |Sj(XZ=0), Z, µ0,j)

Under the assumptions above, the full conditional distribution of
each of Zi, µZ,j and σ2

0,j for i = 1, . . . , n and j = 1, . . . , m is
known and can be sampled from using standard numerical methods.
A (correlated) sample from the posterior distribution can then be
obtained using the following algorithm:

Step 1. For each summary statistic j, sample µ0,j from

µ0,j |Sj(X), Z, σ2
0,j ∼ N


 1

n0

∑

i/Zi=0

Sj(Xi),
σ2

0,j

n0




and µ1,j from

µ1,j |Sj(X), Z, σ2
0,j ∼ N


 1

n1

∑

i/Zi=1

Sj(Xi),
λ2 σ2

0,j

n1



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where nz =
∑

i I(Zi = z), with I the indicator function, is the
number of individuals in each class.

Step 2. For each summary statistic j, sample σ2
0,j from

σ2
0,j |Sj(X), Z, µ0,j ∼ Scale-Inv-χ2


n0,

∑

i/Zi=0

(Sj(Xi)− µ0,j)
2

n0




and set σ2
1,j = λ2σ2

0,j

Step 3. For each individual i, sample Zi from

Zi|S1(X), . . . , Sm(X), µ, σ2 ∼ Bernouilli(θ)

where

θ =
p1

p0 + p1
and pl =

∏
j

P (Sj(Xi)|Zi = l, µl,j , σ
2
0,j)

A sample from the posterior distribution is obtained by repeating
Steps 1 to 3 for T iterations. The posterior probability of the ith

individual being an outlier is then estimated as

1

T

T∑
t=1

I(Z
(t)
i = 1)

where Z
(t)
i is the class membership of the ith individual at iteration

t.

Alternative prior distributions
The above model considers uninformative priors for the parameters.
If we find ourselves with no individual in the outlier class when
exploring the posterior distribution, the conditional distribution of
the means of the Gaussian distributions describing the variation in
the summary statistics in the outlier class is not well defined. To
circumvent this problem, we added a hierarchical component by
assuming that means of both the normal and outlier class come
from another Gaussian distribution with mean µ

j
and variance σ2

j

assigned to each summary statistic. Updating those two new hyper-
parameters requires priors on µ

j
and σ2

j . We chose the normal prior

on the mean with parameters µH,j and σ2
H,j , and the conjugate

Scaled Inverse Chi-Square prior on the variance with parameters
νj and Γ2

j . We also assumed that the variance of the normal class
σ2

0,j comes from a Scaled Inverse Chi-Square distribution with kj

degrees of freedom and scale parameter ψj . To incorporate the new
prior structure on the summary statistic means and on the variance
of the normal class, the algorithm is modified as follows:

Step 1. For each summary statistic j sample µ0,j from

µ0,j |Sj(X), Z, σ2
0,j , µj

, σ2
j ∼

N







µ
j

σ2
j

+

∑

i/Zi=0

Sj(Xi)

σ2
0,j


 /

(
1

σ2
j

+
n0

σ2
0,j

)
,

(
1

σ2
j

+
n0

σ2
0,j

)−1




with a similar update for the mean of the class representing outlier
individuals.

Step 2a. For each summary statistic j, sample σ2
0,j from

σ2
0,j |Sj(X), Z, µ0,j , kj , ψj ∼

Scale-Inv-χ2


n0 + kj ,

kjψj +
∑

i/Zi=0

(Sj(Xi)− µ0,j)
2

n0 + kj




and set σ2
1,j = λ2σ2

0,j

Hyper-parameters µ
j

and σ2
j are then updated with an additional

sampling step:

Step 2b. For each summary statistic j sample µ
j

from

µ
j
|µ0,j , µ1,j , σ

2
j , µH,j , σ

2
H,j ∼

N

((
µH,j

σ2
H,j

+
µ0,j + µ1,j

σ2
j

)
/

(
1

σ2
H,j

+
2

σ2
j

)
,

(
1

σ2
H,j

+
2

σ2
j

)−1)

and σ2
j from

σ2
j |µ0,j , µ1,j , µ

j
, νj , Γ

2
j ∼

Scale-Inv-χ2

(
νj + 2,

νjΓ
2
j + (µ0,j − µ

j
)2 + (µ1,j − µ

j
)2

νj + 2

)

The more complicated model which places a hierarchical prior
on the means of the distributions describing the variability of the
summary statistics solves the problem of the empty outlier class
and can be used to enforce the constraint that we expect outliers at
both end of summary statistic range. To achieve this, hyper priors
on the variance of the within class means can be specified with
νj >> 2 and Γ2

j small, which has the effect of juxtaposing the
two distributions.

The inference framework described above also has the capacity
to include prior information on the proportion of outliers. This
is potentially useful to reflect the fact that outlying individuals
are likely to be a small fraction of the sample, and that each
individual has a low prior probability of being in the outlier class.
To incorporate this information, we introduce a new parameter q
which specifies the prior probability that an individual is an outlier.
The natural distribution through which to specify this prior is a
Beta distribution, which is conjugate to the Bernoulli distribution
sampled from in Step 3 of the algorithm. Parameters of this prior
Beta distribution are denoted α and β. In the case of each individual
having equal prior probability q of being an outlier, Step 3 becomes:
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Step 3. For each individual i, sample Zi from

Zi|S1(X), . . . , Sm(X), µ, σ2, q ∼ Bernoulli(θ)

where
θ =

q p1

(1− q) p0 + q p1

and update q using

q|Z, α, β ∼ Beta (n1 + α, n0 + β)

Looking back at the original model, we see that without explicitly
modeling q we were in fact implicitly assuming that each individual
had a prior probability of one half of being an outlier, irrespective
of the fraction of individuals currently in the outlier class.

Extension to correlated summary statistics
The approach easily generalizes to correlated summary statistics:

S(Xi)|Zi, µZi , ΣZi ∼ N(µZi , ΣZi)

with ΣZi the covariance matrix. We consider an Inverse-Wishart
prior with parameters k and Ψ for Σ0. We also assume that µ0 and
µ1 come from a Gaussian distribution with mean µ = (µ

1
, . . . , µ

m
)

and a diagonal covariance matrix Σ = diag(σ2
j ). We use the same

priors as before for the hyper-parameters µ
j

and σ2
j .

The algorithm is then modified as follows:

Step 1a. Sample µ0 from

µ0|S(X), Z, Σ0, µ, Σ ∼

N


Σ∗


Σ−1µ + Σ−1

0

∑

i/Zi=0

S(Xi)


 , Σ∗




where Σ∗ =
(
Σ−1 + n0Σ

−1
0

)−1 ,with a similar update for the
mean of the class representing outlier individuals.

Step 2a. Sample Σ0 from

Σ0|S(X), Z, µ0, k, Ψ ∼

I-W


n0 + k, Ψ +

∑

i/Zi=0

(S(Xi)− µ0)(S(Xi)− µ0)
T




and set Σ1 = λ2Σ0

Other steps remain the same as in the case of uncorrelated
summary statistics.

Note: In the case of uninformative priors, the algorithm is reduced
to the following steps:

Step 1a. Sample µ0 from

µ0|S(X), Z, Σ0 ∼ N


 1

n0

∑

i/Zi=0

S(Xi),
Σ0

n0




with a similar update for the mean of the class representing outlier
individuals.

Step 2. Sample Σ0 from

Σ0|S(X), Z, µ0 ∼ I-W


n0,

∑

i/Zi=0

(S(Xi)− µ0)(S(Xi)− µ0)
T




and set Σ1 = λ2Σ0

Step 3. For each individual i, sample Zi from

Zi|S1(X), . . . , Sm(X), µ, σ2 ∼ Bernouilli(θ)

where
θ =

p1

p0 + p1

Using prior information
The prior distributions described above allow the program to
incorporate information about the typical distribution of the inlier
summary statistics. When the proportion of outliers is large this
information can help ensure that the correct cluster is assigned
to be the inliers. The algorithm is also aided by using this prior
information for initialisation. The current implementation of the
algorithm either allows only a prior on the fraction by specifying α
and β (and uninformative priors on the rest), or a full specification
of the prior by setting the mean µH,j and variance σ2

H,j of hyper
mean, the conjugate Scaled Inverse Chi-Square prior on the hyper
variance with parameters νj and Γ2

j , and a prior on the normal
class covariance as another Inverse-Wishart prior with k degrees of
freedom and scale matrix ψ.

As an example we simulated 1000 observations from two bi-
variate normal distribution with zero covariance and means (0, 0)
and (0, 5), with the former assumed to be the inlier samples.
We specified prior information to reflect the fact that we think
the mean of the inlier distribution is centred on (0, 0) with weak
prior information on the variance of the hyper distribution and the
covariance of the normal individuals. The results of the clustering
are shown in figure 1. This toy example demonstrates that the
approach can correctly identify the inlier samples even though
the fraction of outliers is 50% and the distribution have the same
variance. It illustrates the use of prior information in helping obtain
sensible outlier identification.
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Fig. 1. Simulated data in which the proportion of inliers and outliers is the same and prior information is used to identify the correct cluster as ”normal”
samples. 1000 individuals were simulated from the same bi-variate normal distribution with a different mean. The prior of hyper distribution mean was chosen
to be centred on (0, 0).
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Fig. 2. Outlier identification for 58C samples genotyped on Illumina custom Human 1.2M-Duo according to 4 different criteria. ”Normal” individuals are
coloured with a gradation from black to grey, with darker colours denoting higher density of individuals. Outliers are coloured with a gradation from orange
to red, with darker colours denoting higher posterior probability of being an outlier. 99% confidence ellipse of the inferred inlier distribution is shown as a
dashed grey line.
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Fig. 3. Outlier identification for NBS samples genotyped on Affymetrix Genome-Wide Human SNP 6.0 according to 4 different criteria. ”Normal” individuals
are coloured with a gradation from black to grey, with darker colours denoting higher density of individuals. Outliers are coloured with a gradation from orange
to red, with darker colours denoting higher posterior probability of being an outlier. 99% confidence ellipse of the inferred inlier distribution is shown as a
dashed grey line.
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Fig. 4. Outlier identification for NBS samples genotyped on Illumina custom Human 1.2M-Duo according to 4 different criteria. ”Normal” individuals are
coloured with a gradation from black to grey, with darker colours denoting higher density of individuals. Outliers are coloured with a gradation from orange
to red, with darker colours denoting higher posterior probability of being an outlier. 99% confidence ellipse of the inferred inlier distribution is shown as a
dashed grey line.
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