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Binomial Model 
The simple binomial probability forms the basis of our hierarchical model and is used to 

compute sample specific quantities. The number of mutant reads ri  out of ݊௜ total reads in run 
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where ܤሺݔ, ሻݕ ൌ ቀ௫
௬ቁ. 

 

We estimate the true fraction of the sample containing a mutation, θ, by the maximum 

likelihood method. The log-likelihood is 
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Taking the derivative with respect to the parameter and setting equal to zero gives 
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Solving for θ gives θ̂BinoMLE =
ri

i=1

N
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∑
, the maximum likelihood estimate.  

Under the assumption that the read depth for all runs is equal, ݊ ൌ ݊௜ ݅׊, the MLE reduces to 
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∑
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, where k  is the average across runs. 

 

Hierarchical Beta-Binomial Model 

Since the number of runs per sample, ܰ, may be quite small we use a hierarchical model to 

incorporate information from adjacent positions to estimate the null model. The hierarchical 

model (Supplementary Figure SS10) is 

,࢐࢏ࣂ|࢐࢏࢘ ,࢐࢏ࣂBinomial൫~࢐࢏࢔  ࢐൯࢏࢔

,௝ߤ|௜௝ߠ ,௝ߤBeta൫~ܯ  ൯ܯ
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The corresponding probability distribution functions are 

Pr൫ݎ௜௝|ߠ௜௝, ݊௜௝൯ ൌ ቆ
݊௜௝

௜௝ݎ
ቇ ௜௝ߠ

௥೔ೕ൫1 െ  ௜௝൯௡೔ೕି௥೔ೕߠ

Pr൫ߠ௜௝|ߤ௝, ൯ܯ ൌ ,ܯ௝ߤ൫ܤ ൫1 െ ௜௝ߠ൯ܯ௝൯ߤ
ఓೕெିଵ൫1 െ ௜௝൯൫ଵିఓೕ൯ெିଵߠ

 

 

We have used the mean, sample-size parameterization of the Beta distribution rather than the 

standard scale parameterization in order to use a common ܯ for all positions. The 1-1 

conversion is ߙ௝ ൌ ௝ߚ and ܯ௝ߤ ൌ ൫1 െ  .ܯ௝൯ߤ

 

Maximum Likelihood Estimate for the Beta-Binomial Model 
The complete data likelihood of the Beta-Binomial model is 

Prሺݎ, ,ߤ|ߠ ሻܯ ൌ ෑ ෑ Pr൫ݎ௜௝, ,௝ߤ|௜௝ߠ ,ܯ ݊௜௝൯ ൌ
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Therefore, the complete data log-likelihood is 

ℓ௖ሺݎ, ,ߤ|ߠ ,ܯ ݊ሻ ൌ ෍ ෍ log Pr൫ݎ௜௝|ߠ௜௝, ݊௜௝൯ ൅ log Pr൫ߠ௜௝|ߤ௝, ൯ܯ
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ℓ௖ሺݎ, ,ߤ|ߠ ,ܯ ݊ሻ ൌ ෍ ෍ log ൫݊௜௝߁ ൅ 1൯ െ log ௜௝൯ݎ൫߁ െ log ൫݊௜௝߁ െ ௜௝൯ݎ
௃

௝ୀଵ

ே

௜ୀଵ

൅ ௜௝ݎ log ௜௝ߠ

൅ ൫݊௜௝ െ ௜௝൯ݎ log൫1 െ ௜௝൯ߠ ൅ log ሻܯሺ߁

െ log ൯ܯ௝ߤ൫߁ െ log ߁ ቀ൫1 െ ቁܯ௝൯ߤ ൅ ൫ߤ௝ܯ െ 1൯ log ௜௝ߠ ൅ ቀ൫1 െ ܯ௝൯ߤ

െ 1ቁ log൫1 െ  ௜௝൯ߠ

 

Our data set provides observations on ݎ௜௝ for all positions ݆ ൌ 1, … , ݅ and all replicates ܬ ൌ

1, … , ܰ, but ߠ௜௝ is unobserved. The log-likelihood is then 

ℓሺߤ|ݎ, ሻܯ ൌ ෍ ෍ log න Pr൫ݎ௜௝|ߠ௜௝൯ Pr൫ߠ௜௝|ߤ௝, ௜௝ߠ൯݀ܯ
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The logarithm cannot move through to the probability distributions and we are forced to compute 

ܰ ൈ  .integrals in order to compute the log-likelihood ܬ
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We use the EM algorithm to compute a local MLE for the parameters. The algorithm alternates 

between computing the expected value of the unobserved variable ߠ and maximizing the 

likelihood with respect to the parameters ߶ ൌ ሼߤ,  .ሽܯ

 

E-Step: Setting the derivative of the complete log-likelihood with respect to ߠ to zero gives 

߲ℓ௖

௜௝ߠ߲
ൌ

௜௝ݎ

௜௝ߠ
െ

݊௜௝ െ ௜௝ݎ

1 െ ௜௝ߠ
൅

൫ߤ௝ െ 1൯
௜௝ߠ

െ
ቀ൫1 െ ܯ௝൯ߤ െ 1ቁ

1 െ ௜௝ߠ
ൌ 0 

 

The update for ߠ is then 

෠௜௝ߠ ൌ
௜௝ݎ െ ܯ௝ߤ െ 1
ܯ ൅ ݊௜௝ െ 2

 

 

M-step: Setting the derivative of the complete log-likelihood with respect to ߶ ൌ ሼߤ,  ሽ to zero isܯ

done separately for each parameter. The update for ܯ does not have an analytical solution, but 

an optimization algorithm using the Hessian matrix is possible. 

߲ℓ௖

ܯ߲
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Simplifying yields 
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The second derivative is 

߲ଶℓ௖
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The derivative of the complete log-likelihood with respect to ߤ௝ is  
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The second derivative is 

߲ଶℓ௖

௝ߤ߲
ଶ ൌ െܰܯଶ ൬߰ଵ ቀ൫1 െ ቁܯ௝൯ߤ ൅ ߰ଵ൫ߤ௝ܯ൯൰ 

 

EM Algorithm 

1. Initialize ߶଴ ൌ ሼߤ଴, ௝ߤ̂ ଴ሽ toܯ
଴ ൌ

∑ ௥೔ೕ
ಿ
೔సభ

∑ ௡೔ೕ
ಿ
೔సభ

෡଴ܯ , ൌ
∑ ∑ ௡೔ೕ

಻
ೕసభ

ಿ
೔సభ

ே௃
 

2. Begin EM iterations, increment loop counter (i) 

a. E-step: ߠ෠௜௝
௜ ൌ ௥೔ೕିఓണෞ೔షభெ෡೔షభିଵ

ெ෡೔షభା௡೔ೕିଶ
 

b. M-step: 

i. Update ܯ  :ܯ෡௜ ՚ argmaxெ ℓ௖൫ݎ, ,ߤ|෠௜ߠ ,ܯ ݊൯ s.t. ܯ א ሾ0, ∞ሿ 

ii. Update each ߤ௝:  ݑఫෝ ௜ ՚ argmaxఓೕ ℓ௖൫ݎ, ,ߤ|෠௜ߠ ,ܯ ݊൯ s.t. ߤ௝ א ሾ0,1ሿ 

3. Repeat while change in log-likelihood is large: ߜℓ௖ ൌ ℓ೎
೔ିℓ೎

೔షభ

ቚℓ೎
೔షభቚ

൐ 1 ൈ 10ିସ 

The maximization step is carried out by the interior point algorithm. 

 

Normal approximation Hypothesis Test 
Each position was tested whether the reference error rate and the observed error rate were 

significantly different by a Normal z-test. 

 

Given the parameters estimated from reference read data (߶෠଴ ൌ ൛̂ߤ଴,  ෡଴ൟ), the average readܯ

depths for the reference data (݊଴), and ݎ, ݊ observed data for the sample. 

 

Compute the null distribution standard deviation for the Beta-Binomial model (iterated method of 

moments) 

଴ෟݎܽݒ ቀ
ݎ
݊

ቁ ൌ ො଴ߪ
ଶ ൌ

଴ሺ1ߤ̂ െ ଴ሻߤ̂
݊଴

ቆ1 ൅
݊଴ െ 1
෡଴ܯ െ 1

ቇ 

 

Compute the z-statistic for the observed sample data at that position, j,  

௝ݖ ൌ

ೝೕ
೙ೕ

ିఓෝೕబ

ఙෝೕబ
. 

 

Compute the associated p-value from the normal distribution and the test statistic. 
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The power curve estimates were derived by the same method using the iterated method of 

moments estimate for the alternative hypothesis as well. 
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Supplementary Table S1.  Indexing accuracy assessment. 

 

     Number of Mapped Mate Pair Reads  

Amplicon 
number 

Barcode 
index 

sequence 
for Read 1 

and 2 

 Correct barcode 
on both Read 1 

and Read 2  

 Correct amplicon 
for both Reads 1 
and 2 barcode  

 Incorrect 
amplicon for both 

Reads 1 and 2 
barcode  

1 'AAT'                1,664,047                1,621,535                           72 

2 'ACT'                1,112,980                1,081,317                         419 

3 'AGT'                   991,500                   197,819                         286 

4 'ATT'                   984,946                   872,663                         543 

5 'CAT'                   785,230                   751,807                         467 

6 'CCT'                   967,119                   901,199                         663 

7 'CGT'                1,018,853                   746,441                         666 

8 'CTT'                   969,806                   720,371                         509 

9 'GAT'                1,981,114                1,868,341                       1,081 

10 'GCT'                1,214,134                   827,694                       1,641 

11 'GGT'                1,289,662                1,120,478                         898 

12 'GTT'                1,260,348                1,224,791                         392 

13 'TAT'                1,369,396                1,203,679                         646 

14 'TCT'                1,061,735                   984,029                         864 

15 'TGT'                1,651,456                1,384,276                       1,012 

16 'TTT'                1,155,397                   804,634                       1,096 

Total Mapped Mate 
Pair Reads 

              
19,477,723  

 
16,311,074                     11,255 
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Supplementary Table S2.  H1N1 variants. 

 

    B23 
B23  
5X 

Dilution

B23 
25X 

Dilution

BN1 
(rep1)

BN1 
(rep2) BN3 BN4 BN5 BN6 BN7 BN8 BN9 ref1 ref2 ref3 Mutation 

average 

Mutations with  
0.1% sample 

fraction or 
greater 

Lane 1 74 4 5 23 23 24 34 60 50 33 41 40 0 1 0 40 

Lane 2 87 6 7 25 21 26 42 62 51 31 51 54 0 0 0 45 

Consensus 
for both 
lanes 

60 4 4 21 17 18 32 36 37 24 40 35 0 0 0 32 

                                    

Non-
synonymous 

mutations 

Lane 1 50 3 2 13 14 13 17 43 32 21 23 27 0 1 0 25 

Lane 2 65 6 3 15 13 16 24 42 35 18 31 35 0 0 0 29 

Consensus 
for both 
lanes 

42 2 2 13 11 10 16 25 23 15 23 24 0 0 0 20 
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Supplementary Figure S1.  Synthetic gene sequence.  The synthetic gene reference is shown 

and the companion sequence with 14 known mutant positions is shown marked on the 

sequence. A polylinker sequence facilitates cloning into a DNA vector. 
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Supplementary Figure S2.  Sequencing experiment design.  The overall design of the synthetic sequence 

mutation analysis is outlined.  We used this experiment to create known sample fraction admixtures of the 

mutant to the reference synthetic sequence. 
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Supplementary Figure S3.  Scatter plots showing the intra-lane and inter-lane reproducibility.  One sample, 

BN1, was run twice on lane 1 and twice on lane 2 allowing us to compare called variant positions within lanes 

and between lanes.   Each replicate of the reference is coded in a different color: red, blue, green. (A, C) 

Within lanes, the calls are reproducible for the sample fraction greater than 0.1%.  However, the lower values 

of the variant fractions show some divergence between replicates.  (B) A similar observation is present when 

comparing positions that are called in both replicates within individual lanes.  For variant fractions greater than 

0.1%, the calls are reproducible, but below that detection limit, the calls are less reproducible. 
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Supplementary Figure S4.  Synthetic sequence data comparison of error rates between strands and matched 

pairs.  The correlation between paired ends is high for both sequence reads in the forward direction and 

reverse direction (a and b). There is no correlation between forward and reverse reads for the first in the pair 

sequence (c) as well as forward and reverse reads in the second pair (d). Each replicate of the reference is 

coded in a different color: red, blue, green. 
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Supplementary Figure S5.  Clinical sample error rates between strands and matched pairs lane 1.  The 

correlation between paired ends is high for both sequence reads in the forward direction and reverse direction 

(a and b), similar to the synthetic DNA data.  There is no correlation between forward and reverse reads for the 

first in the pair sequence (c) as well as forward and reverse reads in the second pair (d).  Each replicate of the 

reference is coded in a different color: red, blue, green. 
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Supplementary Figure S6.  Clinical sample error rate differential between forward direction reads and reverse 

direction reads for lane 2.  Positions called error-prone in the forward direction (red) or reverse direction (black) 

are filtered.  The error-prone direction reads are removed from the data set and only the lower error rate 

direction reads are retained for that position.  The correlation between paired ends is high for both sequence 

reads in the forward direction and reverse direction (A and B), similar to the synthetic DNA data. Each replicate 

of the reference is coded in a different color: red, blue, green.  There is no correlation between forward and 

reverse reads for the first in the pair sequence (C) as well as forward and reverse reads in the second pair (D). 

Each replicate of the reference is coded in a different color: red, blue, green. 
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Supplementary Figure S7.  Synthetic reference positions are filtered based on error rate differential between 

forward direction reads and reverse direction reads.  Positions called error-prone in the forward direction (red) 

or reverse direction (black) are filtered.  The error-prone direction reads are removed from the data set and 

only the lower error rate direction reads are retained for that position. 
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Supplementary Figure S8.  Clinical sample reference lane 1 data positions are filtered based on error rate 

differential between forward direction reads and reverse direction reads.  Positions called error-prone in the 

forward direction (red) or reverse direction (black) are filtered.  The error-prone direction reads are removed 

from the data set and only the lower error rate direction reads are retained for that position. 
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Supplementary Figure S9.  Clinical sample reference lane 2 data positions are filtered based on error rate 

differential between forward direction reads and reverse direction reads.  Using Lane 2 data, positions called 

error-prone in the forward direction (red) or reverse direction (black) are filtered. The error-prone direction 

reads are removed from the data set and only the lower error rate direction reads are retained for that position. 
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Supplementary Figure S10.  Graphical model representation of the Beta-Binomial model.  In the graphical 

model, nodes represent random variables and edges indicate functional relationships.  An edge from one node 

to another indicates that the distribution of the variable the arrow is pointing to is conditionally dependent on 

the node the arrow is pointing from.  A shaded node indicates the random variable is observed. Unobserved 

nodes are not shaded and nodes with a filled circle inside are parameters.  Parameters can be considered 

random variables with diffuse (improper) priors.  The square plate surrounding nodes indicates the random 

variables contained within are replicated the number of times indicated within the plate and are exchangeable.  

This graphical model is hierarchical; theta~Beta (mu,M) and k~Binomial (n,theta). 

 

 


