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1 Supplementary materials and methods

1.1 Details of model learning

In Step 2 of the model learning algorithm (see the main text), we use hidden
Markov models (HMMs) in order to simulate from the conditional posterior
distribution p(Mi�jM�i; �0; �; a; Y ), see e.g. [1] for a detailed discussion of the
characteristics of HMMs. The hidden states are in this case the variables Mij ,
j = 1; : : : ; L, where L is the total number of SNPs, and the corresponding
observations are Yij , j = 1; : : : ; L: Each hidden state Mij has K possible values
corresponding to the K possible clusters Sj = fsjhgh=1;:::;K that are detectable
at site j. The conditional HMM structure then follows, since

p(Yij jMi�;M�i; Y�i; �0; �; a) = p(Yij jMij ;M�i; Y�i);

i.e. conditionally on Mij , Yij is independent on rest of the Mi� (given all other
conditioning variables). In other words, to specify the probability of observation
Yij , we only need to know the cluster from which the observation was emitted,
when the clustering for the remainder of the data is �xed at site j. Formally,
these emission probabilities are given by

P (Yij = yjMij = h;M�i; Y�i) =
�=4 + nhjyP4
k=1 �=4 + nhjk

; (1)

where nhjk denotes the observed frequency of nucleotide k in cluster sjh at site
j (k = 1; : : : ; 4; h = 1; : : : ;K; j = 1; : : : ; L), while excluding the observations
of the taxon under investigation. The formula (1) follows by �rst updating the
prior (Eq 2 in the main text) of the base frequencies in cluster sjh to

(phj1; : : : ; phj4) � Dirichlet(�=4 + nhj1; : : : ; �=4 + nhj4); (2)

and integrating these frequency parameters out analytically, which is possible
because the distribution (2) is conjugate to the multinomial likelihood (Eq 1 in
the main text) (for derivation see e.g. [2]). We further have the probabilities

p(Mij jMi;1:j�1;M�i; Y�i; �0; �; a) = p(Mij jMi;j�1; �0; �; a);

i.e. the hidden states form a Markov chain. These transition probabilities are
determined by the transition matrix (Eq 3 in the main text).
In Step 2, we update parameters �0; �; a by maximizing p(�0; �; ajM;Y ). To

do this we notice that given segmentations of the genomes to di¤erent origins
(determined by M), these parameters are independent of the observations Y .
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After some straightforward algebra, we obtain the expression:

log p(�0; �; ajM) = const+ log(M j�0; �; a) + log p(�0; �; a) (3)

= const+A1 log �0 +A2 log(1� �0)
+A3 log �+A4 log(1� �)
+A5 log [(1� �)a] +A6 log [(1� �)(1� a)]
+ (L� � 2) log �0 � 2 log(1� �)
+ (�a � 1) log(a) + (�a � 1) log(1� a):

The constants A1; : : : ; A6 depend on the numbers and lengths of the segments
assigned to have their origin either in cluster 1 (the non-recombining case) or
in some other cluster. For example,

A1 =

 
mX
i=1

li

!
�m;

where m is the number of segments among all taxa assigned to cluster 1 and
l1; : : : ; lm are the lengths of these segments. The last two rows in (3) follow from
the prior assumptions for �0; �; a (Eqs 4, 5 and 7 in the main text). Notice
that each term in the sum (3) depends on one of the parameters �0; �; a only.
Therefore, each parameter can be straightforwardly maximized separately by
�nding the point in which the respective partial derivative equals zero.
Unlike in a fully Bayesian analysis, which would use MCMC to explore the

posterior distribution over the whole model space (at least in theory), we use
the MCMC in Step 2 as a search algorithm for re�ning our approximation of
the posterior mode of M . In practice the iterative operators in Step 2 tend
to converge quite rapidly, such that after approximately 5 iterations the model
structure M remains almost unchanged. When running in silico experiments
with our method, we executed the algorithm with 1000 iterations for the S.
pneumoniae data. When the results were compared with those obtained using
only �ve iterations, the di¤erences were found to be negligible. All results
presented in this manuscript are obtained by stopping the iterative algorithm
after 10 iterations.
In the Step 3 our algorithm obtains the required probabilities p(Mij =

1jM�i; �0; �; a; Y ) immediately using the standard forward-backward algorithm.
Notice that the probabilities are only reported conditional on the optimal model.
The reason for this is that the contents of the clusters may change between iter-
ations, when taxa are moved from one cluster to another. Therefore, averaging
the probabilities over the iterations in Step 3 would lack any reasonable inter-
pretation.
In the Step 4, for each segment detected in a particular re-analysis of a

permuted data set we calculate the Bayes factor [3] against having the non-
recombining state. Then, an empirical p-value for each segment detected in the
original data can be obtained as a proportion of permuted data sets in which
some segment for the same sequence has a higher value of the Bayes factor than
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the original segment. In all analyses we carried out 100 permutation runs and
used p = 0:05 as the threshold for reporting a �nding as statistically signi�cant.

1.2 Blockwise clustering for initialization

To initialize the algorithm presented in the previous section, we use the follow-
ing clustering approach. Firstly, the total genome is evenly split into contiguous
segments of length 5kb and the single-nucleotide polymorphisms (SNPs) within
each segment are identi�ed. In cases where a segment contains less SNPs than
a given threshold, say <20, the segment is combined with the next neighboring
segment in the alignment. This merging procedure is continued until all con-
sidered segments contain at least as many SNPs as speci�ed by the threshold.
Assume now that the data pre-processing step yields m segments. Then, we
process the data from each segment c into a separate matrix Bc where columns
map uniquely to the SNPs of the segment and the elements are the bases at the
corresponding sites. The m data block matrices B1; : : : ; Bm are then clustered
independently of each other using the basic model (with hyperparameter � set
as described in the main text) for clustering of individual samples in BAPS
software [4]. Notice that these analyses can be e¤ectively performed in a paral-
lel environment by running m independent copies of the estimation algorithm
if needed. Furthermore, as demonstrated earlier in a highly complex bacterial
population setting [5], the stochastic optimization algorithm used in BAPS can
e¢ ciently infer even several dozens of underlying groups hidden in a data set.
The posterior mode estimates of the m clusterings are then used to create

a hierarchical representation of the taxa, de�ned as the proportion of shared
ancestry (PSA) tree. Let P1; : : : ; Pm denote the estimated optimal clusterings
for the segments, such that each Pc is a partition of the N taxa into an arbi-
trary number of non-overlapping subsets. The information contained in the m
partitions is summarized in terms of an ultrametric tree as follows:

1. Calculate distances d�ij between every pair (i; j) of taxa. The distances
are calculated as the fraction of all 5kb segments in which the taxa i and
j are in di¤erent clusters in the respective clusterings Sc.

2. Calculate a dendrogram, i.e. an indexed binary tree with the N taxa as
leaf nodes. The dendrogram is calculated using the standard complete
linkage distances, see e.g. [6].

In our approach the PSA tree is used to initialize the search, but it may also
be of interest in itself for describing evolutionary relationships among recom-
binogenic samples. We investigated the behaviour of PSA trees using simulated
data. We analyzed two di¤erent data sets corresponding to tree heights d = 0:01
and d = 0:03 (see the main text), each with and without recombinations intro-
duced. The true recombinations in either case were those shown in Fig. 3 of
the main text. When no recombinations were present, the estimated PSA trees
were completely �at, accurately re�ecting the absence of recombinations. Sup-
plementary Fig. S1 shows the estimated PSA trees when recombinations were
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added to the data sets. When compared to the PSA tree with clustering results
perfectly re�ecting the recombinations (the `true�PSA tree), the tree estimated
with d = 0:03 is closer to the optimal result. With both d = 0:01 and d = 0:03
the height of the estimated tree is underestimated compared to the truth, which
is caused by the insensitivity of the clustering model to detect all recombina-
tions. However, with both data sets the branches in the estimated PSA trees
consist of sequences which have common recombinations, thus providing a suit-
able basis for initializing our algorithm as described in the following. Notice
how sequences close to each other in a PSA tree are closely related also in the
original tree, due to the fact that a recombination event always a¤ects a branch
of the phylogeny comprising a group of closely related sequences.
The PSA tree is used to create a summary clustering of taxa in a data set.

The summary clustering can be created in a standard manner by cutting the
tree at an appropriate level, the branches below the cuto¤ level then forming
the clusters. This decision is guided by subjective consideration but standard
guidelines for analyzing dendrogram appearance can be used. Nevertheless,
since the clusters are used only for initializing the search algorithm, di¤erent
cuto¤ levels can be used to initialize the algorithm on di¤erent runs, if desired.
Finally, the initial state is obtained by concatenating the clusterings P1; : : : ; Pm
on separate 5 kb intervals, and selecting the labels for the clusters on each
interval using the following procedure:

1. For all intervals c = 1; : : : ;m; label all clusters in Pc starting from the
largest cluster. When labeling a cluster, select a label unused in that
interval such that the cluster in the summary clustering with that label is
most prevalent in the cluster.

2. Finally, when all clusters for all intervals are assigned labels, we iterate
over the intervals to further re�ne the initial state. This is achieved by
�nding a permutation of the labels of clusters in Pc that minimizes the
average entropy of label distributions over the sequences. These iterations
are continued until no changes occur (typically this would happen after a
minor number of iterations). The outcome of this procedure is that the
labelings of the sequences change as few times as possible over the genome.

The process of creating the initial state is illustrated by showing the intermediate
states for S. pneumoniae data: i) clusterings shown side by side without ordering
the cluster labels (colors), ii) clusterings shown side by side and labels ordered
according to step 1, and iii) clusterings shown side by side and labels ordered
using both steps 1 and 2. These intermediate results are shown in supplementary
Figs. S2-S4, respectively.

1.3 Simulated test data sets

The simulated data sets were created as described below.

� We created a random tree (or genealogy) using Recodon [7], which is
a software for generating genealogies and sequences using a coalescent.
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The tree was created for 90 sequences which had been sampled from 3
populations each of size 30. We used the following command to create the
tree:

� recodon1.6.0_win -n1 -s90 -l1 -e1000 -q3 30 30 30 0.0001 -r0.00 -
jtrees

The tree is shown in Fig. 2 in the main text.

� We used the tree created in the previous step as an input to Seq-gen soft-
ware [8] to create the actual sequences of length 1 Mb. We used the HKY
mutation model [9] with transition-transversion ratio set to 2.0 and the
stationary distribution equal to (0.1, 0.4, 0.4, 0.1). The tree height in units
of substitutions per site was either 0:01 or 0:03. The cyan-colored taxa
in Fig. 2 in the main text were considered as the samples. We simulated
a given number of recombination events into the branches of the subtree
containing the cyan-colored taxa. The origin of each recombination event
was randomly selected to be one of the colored clusters shown in Fig. 2.
The sequences a¤ected by recombination were assigned a segment from
randomly selected taxa from the donor cluster. The resulting numbers of
polymorphic sites in the alignments before and after the recombinations
were introduced are shown in Table 2 in the main text. If a recombination
a¤ected a branch which contains the majority of all taxa, the complement
group of these taxa was considered as recombinant when evaluating the re-
sults. The reason for this is the nonidenti�ability issue which is discussed
in more detail in the Discussion in the main text.
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2 Supplementary �gures

2.1 Supplementary �gure S1: Estimated PSA trees

The �gure shows estimated PSA trees for simulated data. The top left panel
shows the underlying phylogenetic tree, according to which data were generated.
The top right panel shows the PSA tree corresponding to the situation that all
recombinations were detected by the initial clustering analysis. The panels at
the bottom show estimated PSA trees when the generating tree height was 0:01
and 0:03, respectively, and recombinations were introduced to the data sets.
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2.2 Supplementary �gure S2: Initialization, unordered clus-
ter labels

The �gure shows the �rst intermediate state of the initialization of the search
algorithm which consists of concatenated clusterings at 5 kb intervals before
ordering of the cluster labels. The vertical axis comprises the 241 S.pneumonia
samples, and the horizontal axis shows the position along the genome. The 5
kb columns are colored with di¤erent colors corresponding to di¤erent cluster
labels. The color bar on the right shows the same global clusters as in Fig. 4 of
the main text.
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2.3 Supplementary �gure S3: Initialization, after the �rst
cluster label ordering step

The �gure shows the second intermediate state of the initialization of the search
algorithm after the cluster label ordering step 1.
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2.4 Supplementary �gure S4: Initialization, after the sec-
ond cluster label ordering step

The �gure shows the third intermediate state of the initialization of the search
algorithm after the cluster label ordering step 2.
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2.5 Supplementary �gure S5: Recombinogenic segments
for S. pneumoniae data from Croucher et al. (2011)

The �gure shows the recombination events for the S.pneumoniae data, detected
in [10]. The samples are ordered in the same order as in Fig. 4 of the main text,
and the colored bars on the right are used to label the same clusters as in Fig.
4 of the main text.
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