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Supplementary Figure 1. Structures of small molecule ligands used in this work.
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Supplementary Figure 2. Preparation of native membrane vesicles. Cells were incubated in a
hypotonic solution, gently lysed, and the internal components separated from the outer membranes
by centrifugation. Outer membranes were then sonicated and centrifuged to create a uniform
population of SUV’s containing native proteins. See references S1 and S2 for similar procedures.

Supplementary Figure 3. Western Blot of native cell
membrane-derived SUV’s stained for the presence of the
GABA, receptor. Lanes 1-2, derived from b12.2-transformed
cells; lanes 4-5, derived from CHO-K1 cells, lanes 3 and 6,
bovine serum albumin.
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Table 1. Binding constants determined

references to previous measurements.

by BSI from the plots

shown in Figure 2, including

Membrane-bound Solution-phase Literature value and
o . Kq (BSI) 2
binding partner ligand reference
' Kp = 4 pM, ref. S3b
GM1 Cholera toxin B 0.13 +0.03nM b= PRI
subunit Kp = 20 nM, ref. S4 ¢
0.26 + 0.04 nM (pH 7.4
FAAH OL-135 nM (pH 7.4) Ki = 4.7 nM, ref. S5
13+ 7.6 pM (pH 9.0)
0.13+0.02 nM (pH 7.4)
FAAH FAR-1-216 Ki = 20 nM, ref. S6
0.10 + 0.03 nM (pH 9.0)
41+1.7uM (pH 7.4
FAAH JG-11-145 KM (p ) Ki=10 pM, ref. S7
310 + 170 nM (pH 9.0)

CXCR4 SDF-1a. 0.69 + 0.33 nM ICs0 = 1.8 nM, ref. S8 d
GABAg receptor GABA 140 + 65 nM [Cs50= 140 nM, ref. S9e
GABAg receptor Baclofen 210 + 34 nM Cs0 = 210’515(?:11\/[’ ref. $9,
GABAg receptor SKF-97541 20+ 7.1 nM [Cs0 = 66 nM, ref. S10 ¢
GABAg receptor CGP-54626 54 1.7 nM [Cs0 = 2.2 nM, ref. S9 ¢

(a) Error limits are derived from the statistical error of curve fitting the curves shown in Figure 2.
(b) Determined by SPR. (c) Determined by fluorescence microscopy. (d) Determined by radioligand
displacement on human T-lymphoblasts. (e) Determined by radioligand displacement on rat
cerebral cortex extracts.

Other Label-Free Methods

The most common type of label-free measurement made on unmodified biological
molecules is the optical study of intrinsically fluorescent substrates or binders, such as
proteins containing tryptophan residues at or near the site of action. This method provides
a relatively narrow measurement window, since the majority of substrates of interest lack
the good fortune to be naturally fluorescent. Cell-based assays, such as CellKey (MDS
Analytical Technologies), 511 EPIC (Corning),51? xCELLigence (Roche),*'3 and BIND (SRU
Biosystems)s!* provide indirect measurements of membrane “interaction constants”.
Typically, impedance or waveguide interferometry-type measurements form the basis for
such techniques, with the end observation being a change in cell phenotype (resistance to
electrical current, morphology, etc.) after analytes of interest are added to cultures. While
extremely sensitive, especially when combined with top-end image analysis, such
techniques do not directly probe specific molecular interactions; further experiments,
usually label-based, are required to directly relate observed morphology changes with
target-ligand interactions Surface plasmon resonance (SPR) and related techniques are
popular and effectiveS!> but require the immobilization of the membrane and its
constituents onto the plasmonic support,s® which may or may not be conducive to
replicating a native membrane environment. Bulk-phase techniques such as isothermal




titration calorimetry can allow correlation of molecular solute interactions with enthalpic
changes, however this class of techniques generally requires relatively greater amounts of
reactants, has low dynamic range, and a need for precise buffer matching; conditions often
unfeasible in experiments involving complex matrices.

Disconnection between Binding (Kq) and Inhibition (Kj)

Although these parameters go by different names, at least three reports have
appeared for diverse proteins in which Kq and K; differ by three orders of magnitude or
more.S17-519 (This is approximately the difference in magnitude in these parameters
observed here for FAAH, comparing BSI results to inhibition constants reported in the
literature.)

SUP-T1 cells

These cells*2? were provided as kind gift of the Torbett laboratory (The Scripps
Research Institute). The negative control cell line (designated X4 -/-) were identical except
for the suppression of CXCR4 levels using a specific zinc finger nuclease.5?1
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