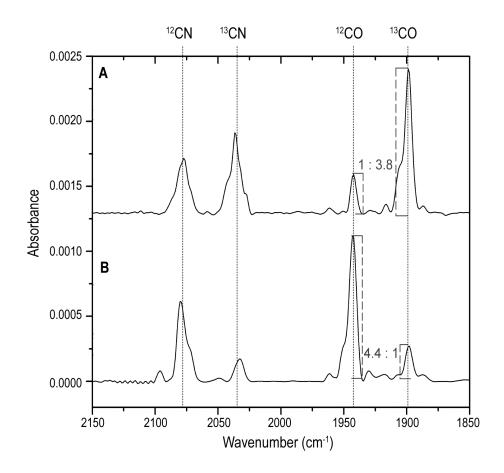
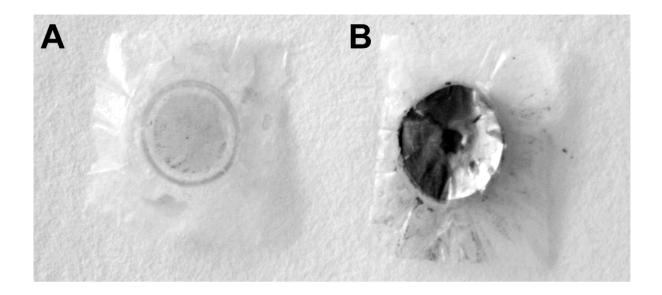
Probing the origin of the metabolic precursor of the CO ligand in the catalytic center of [NiFe]-hydrogenase


Ingmar Bürstel¹, Philipp Hummel², Elisabeth Siebert², Nattawadee Wisitruangsakul², Ingo Zebger², Bärbel Friedrich¹, and Oliver Lenz¹

Supplemental Data

Table of content

Page S-1 - SUPPLEMENTAL FIGURE S1. FTIR spectroscopic analysis of the regulatory [NiFe]-hydrogenase purified from cells grown heterotrophically on fructose and differentially labeled glycerol.


Page S-2 - SUPPLEMENTAL FIGURE S2. CO-mediated reduction of PdCl₂ resulting in the formation of metallic Pd.

SUPPLEMENTAL FIGURE S1. **FTIR** spectroscopic analysis of the regulatory [NiFe]-hydrogenase purified from cells grown heterotrophically on fructose and differentially labeled glycerol. The following substrates were used: A, $^{12}C_6$ -fructose and 1,3- $^{13}C_2$ -glycerol; B, $^{12}C_6$ -fructose and 2- ^{13}C -glycerol. Hatched lines indicate the ν (CN) and ν (CO) vibrational modes. Bands at wavenumbers 2080 cm⁻¹ and 2072 cm⁻¹ are attributed to the ^{12}CN - ligands and the absorption at 1943 cm⁻¹ to the ^{12}CO ligand. Incorporation of the ^{13}C atom leads to specific band shifts to 2038 cm⁻¹ and 2027 cm⁻¹ of the CN⁻ ligands and to 1899 cm⁻¹ of the CO ligand.

¹Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, Chausseestraße 117,10115 Berlin, Germany.

²Technische Universität Berlin, Max-Volmer-Laboratorium, Straße des 17. Juni 135, 10623 Berlin, Germany.

SUPPLEMENTAL FIGURE S2. **CO-mediated reduction of PdCl₂ resulting in the formation of metallic Pd.** Palladium(II)chloride-filled capsules sealed with a gas-permeable membrane were deposited in *R. eutropha* cell cultures growing heterotrophically (*A*) in minimal medium with fructose-glycerol, or lithoautotrophically (*B*) on H₂ and CO₂. The capsules were removed after a cultivation time of 35 h and the membrane was analyzed for the precipitation of metallic palladium.