Supplementary Fig. 1

Fig. S1. IFIT1, IFIT2, and IFIT3 protein expression in WNV-infected wt MEF. Wt BI6 MEF was mock-infected or infected with WNV-MAD at an MOI of 1. Protein lysate was collected at indicated times and immunoblotted using IFIT1, IFIT2, and IFIT3 antibodies. GAPDH was used as loading control.

Fig. S2. Characterization of phospho-specific STAT1 S708 antibody. **(A)** Phosphospecific rabbit polyclonal antibody was generated against STAT1 peptide YIKTELI{pS}VSEVHP. The antibody was tested using immunoblotting against lysate from HEK293 cells treated with 100 IU/ml of IFN-α2a or infected with 100 HA U/ml SenV for 16 hours. Total and p-STAT1 Y701 antibodies were also used for immunoblotting. **(B)** A peptide competition assay was performed to determine specificity of the p-STAT S708 antibody. The p-STAT1 S708 antibody was pre-incubated with titrated dose of wt STAT1(701-714) peptide or S708-phosphorylated peptide (left-to-right: 0.5 μ M, 0.05 μ M, 0.005 μ M) overnight at 4°C. Antibody-peptide solutions were used in an immunoblot of IFN-β-stimulated HEK293 cells. The membrane was stripped and re-blotted; total STAT1 and Tubulin antibodies were included as controls. **(C)** Lambda-protein phosphatase (λ -PPase; New England BioLabs) was used to remove phosphate groups from serine residues, to further assess the crossreactivity the p-STAT1 S708 antibody with non-phosphorylated STAT1 protein. U3A (lane 1) and 2fTGH cells (lane 2-4) were treated with 100 IU/ml IFN-β for 24-hours. Following harvest, 2fTGH cell lysate was treated with buffer only (lane 3) or with 400U of λ -PPase (lane 4) for 1-hour at 30°C. p-STAT1 S708, p-STAT1 S727, and total STAT1 antibodies were used for immunoblotting.

Suplementary Fig. 3

Fig. S3. Loss of IKKE does not affect IRF-3 activation. Wt BI6 or IKKE-/- MEFs were mock-infected or infected with 100 HA U/ml SenV. At 16 hpi, cells were fixed and visualized by immunofluores-cent staining with IRF-3.

Fig. S4. IFN- β secretion of wt, IRF-3-/-, and IFNAR-/- MEFs following WNV-MAD infection. MEFs were mock-infected or infected with WNV-MAD at MOI of 1. Culture supernatant was collected at 24-, 48-, and 72-hours post infection (hpi) and subjected to IFN- β ELISA.

Supplementary Fig. 5

Fig. S5. STAT1 S708 phosphorylation requires *de novo* protein synthesis. **(A)** 2fTGH cells were mock-stimulated (lane 1-2) or stimulated with 100IU/ml IFN-β (lane 3-9). At various points following addition of IFN-β to culture supernatant, cells were chased with CHX (0 hr: CHX was added at time of IFN-β addition; –: no CHX). Cells were harvested at 16 hours post-mock or IFN stimulation and immunoblotted using p-STAT1 S708, p-STAT1 Y701, total STAT1, and IFIT1 antibodies. **(B)** 2fTGH cells were cultured in the presence of IFN-β only (No treatment), IFN-β and DMSO (DMSO), or IFN-β and CHX (CHX) for 16-hours. CHX toxicity in cells treated with IFN-β was assessed using mitochondrial toxicity test (MTT; Sigma). Absorbance at 570nm was read and normalized to background absorbance at 630nm. Average value from DMSO and CHX-treated cells were compared to those of non-treated cells (set as 100%) and graphed. Error bars represent standard deviations of triplicate experiments.

Fig. S6. STAT1 phosphorylation at Y701 and S708 are mutually exclusive. U3A cells lacking STAT1 were vector transfected, or reconstituted by transient transfection of FLAG-STAT1 wt, Y701E, Y701F, S708A, S708D, or S727A. At 16-hours post-transfection, cells were stimulated with IFN- β and then harvested 16 hours later. Reconstituted STAT1 was immunoprecipitated using FLAG-M2 agarose beads and eluates were immunoblotted using antibodies against p-STAT1 S708, p-STAT1 Y701, p-STAT1 S727, and FLAG (*, non-specific band; •, specific STAT1 S708P band).