Supplementary Information for:-

THE INTERFACE BETWEEN CATALYTIC AND HEMOPEXIN DOMAINS IN MATRIX METALLOPROTEINASE-1 CONCEALS A COLLAGEN BINDING EXOSITE

Laurence H. Arnold, Louise Butt, Stephen H. Prior, Chris Read, Gregg B. Fields, Hideaki Nagase, Rob Visse and Andrew R. Pickford

Mutant	Direction	Sequence					
D299A	Forward	GTGATGTTCTTTAAAGCGAGATTCTACATGCGCAC					
	Reverse	GTGCGCATGTAGAATCTCGCTTTAAAGAACATCAC					
R300A	Forward	GAAGTGATGTTCTTTAAAGACGCGTTCTACATGCGCACAAATCC					
	Reverse	GGATTTGTGCGCATGTAGAACGCGTCTTTAAAGAACATCACTTC					
F301A	Forward	GATGTTCTTTAAAGACAGAGCGTACATGCGCACAAATCCC					
	Reverse	GGGATTTGTGCGCATGTACGCTCTGTCTTTAAAGAACATC					
F308A	Forward	CATGCGCACAAATCCCGCCTACCCGGAAGTTGAG					
	Reverse	CTCAACTTCCGGGTAGGCGGGATTTGTGCGCATG					
Y309A	Forward	GCACAAATCCCTTCGCCCCGGAAGTTGAGCTC					
	Reverse	GAGCTCAACTTCCGGGGCGAAGGGATTTGTGC					
F316A	Forward	CGGAAGTTGAGCTCAATGCGATTTCTGTTTTCTGGCC					
	Reverse	GGCCAGAAAACAGAAATCGCATTGAGCTCAACTTCCG					
S318A	Forward	GTTGAGCTCAATTTCATTGCGGTTTTCTGGCCACAACTG					
	Reverse	CAGTTGTGGCCAGAAAACCGCAATGAAATTGAGCTCAAC					
V319A	Forward	CTCAATTTCATTTCTGCGTTCTGGCCACAACTGCC					
	Reverse	GGCAGTTGTGGCCAGAACGCAGAAATGAAATTGAG					
P325A	Forward	GTTTTCTGGCCACAACTGGCGAATGGGCTTGAAGCTGC					
	Reverse	GCAGCTTCAAGCCCATTCGCCAGTTGTGGCCAGAAAAC					
R337A	Forward	CTTACGAATTTGCCGACGCGGATGAAGTCCGGTTTTTC					
	Reverse	GAAAAACCGGACTTCATCCGCGTCGGCAAATTCGTAAG					
D338A	Forward	GAATTTGCCGACAGAGCGGAAGTCCGGTTTTTC					
	Reverse	GAAAAACCGGACTTCCGCTCTGTCGGCAAATTC					
Q352A	Forward	GTACTGGGCTGTTGCGGGACAGAATGTGC					
	Reverse	GCACATTCTGTCCCGCAACAGCCCAGTAC					
Q354A	Forward	GGCTGTTCAGGGAGCGAATGTGCTACACG					
	Reverse	CGTGTAGCACATTCGCTCCCTGAACAGCC					
H358A	Forward	GGACAGAATGTGCTAGCGGGATACCCCAAGGAC					
	Reverse	GTCCTTGGGGTATCCCGCTAGCACATTCTGTCC					
P361A	Forward	GAATGTGCTACACGGATACGCGAAGGACATCTACAGCTCC					
	Reverse	GGAGCTGTAGATGTCCTTCGCGTATCCGTGTAGCACATTC					

Suppl. Table S1. Oligonucleotides for Site-Directed Mutagenesis of MMP-1.

Residue	Н	Ν	С	Са	Сβ	Residue	Н	Ν	С	Са	Сβ
Pro272	-	n.d.	177.03	61.61	31.48	Gln323	8.24	115.42	174.53	54.84	27.50
Gln273	8.45	121.45	174.41	53.95	27.84	Leu324	7.37	122.79	172.84	50.39	40.07
Thr274	8.12	121.11	170.80	58.65	67.75	Pro325	-	n.d.	171.86	60.16	30.33
Pro275	-	n.d.	173.41	61.21	30.57	Asn326	7.47	112.27	174.50	50.23	38.47
Lys276	8.09	122.06	174.83	53.51	31.99	Gly327	7.86	111.29	173.75	46.66	-
Ala277	8.18	126.01	175.62	53.12	16.89	Leu328	8.37	123.10	174.79	53.52	41.19
Cys278	7.84	110.64	173.52	52.79	38.03	Glu329	8.60	118.45	174.32	55.29	30.75
Asp279	7.45	124.37	175.95	52.71	40.84	Ala330	7.76	118.89	174.30	50.22	20.75
Ser280	8.72	124.88	173.92	59.09	61.71	Ala331	8.90	125.70	172.75	50.18	21.94
Lys281	8.52	122.80	174.62	54.20	30.15	Tyr332	8.99	117.42	169.33	55.63	38.88
Leu282	7.19	125.66	172.48	55.31	41.30	Glu333	7.80	123.90	174.02	52.41	31.43
Thr283	6.74	114.55	170.90	57.35	69.44	Phe334	9.33	130.70	173.92	52.43	36.78
Phe284	9.17	116.24	174.98	56.35	41.13	Ala335	9.34	132.70	178.91	54.45	16.65
Asp285	9.21	124.23	174.60	54.15	40.65	Asp336	8.06	118.52	175.22	55.11	38.96
Ala286	7.79	121.26	173.43	50.39	19.27	Arg337	6.30	114.80	172.98	52.48	30.12
Ile287	8.72	123.88	172.03	59.11	43.09	Asp338	7.99	122.54	172.24	52.94	38.28
Thr288	8.59	118.79	171.25	58.75	68.09	Glu339	7.04	116.02	173.52	52.74	34.35
Thr289	6.91	117.14	174.18	59.81	68.40	Val340	8.75	125.71	172.40	59.08	31.70
Ile290	8.50	120.35	174.37	59.98	38.25	Arg341	8.82	128.07	172.12	52.90	31.36
Arg291	10.41	133.19	175.09	55.70	27.20	Phe342	8.72	121.59	173.49	55.23	42.52
Gly292	9.33	108.38	172.98	44.07	-	Phe343	8.81	121.53	173.67	56.13	40.55
Glu293	7.84	121.98	173.98	53.28	30.34	Lys344	8.75	123.54	174.85	56.81	34.59
Val294	8.33	122.96	172.40	61.24	30.27	Gly345	10.20	124.11	172.47	45.48	-
Met295	8.51	128.27	170.48	52.83	34.47	Asn346	8.09	123.46	172.75	49.86	35.31
Phe296	8.97	125.31	173.61	54.20	39.66	Lys347	7.83	120.97	172.07	52.83	35.97
Phe297	8.80	119.94	174.28	56.50	39.41	Tyr348	8.51	118.02	170.56	53.41	40.42
Lys298	9.17	125.91	172.48	54.33	33.94	Trp349	9.13	122.67	171.63	56.79	33.77
Asp299	10.17	130.93	174.61	55.68	38.31	Ala350	n.d.	n.d.	173.55	48.13	19.73
Arg300	7.42	123.49	174.22	54.80	29.67	Val351	9.08	120.12	173.03	57.55	33.84
Phe301	9.07	123.97	172.66	56.67	41.30	Gln352	8.44	125.64	175.15	53.63	30.84
Tyr302	9.00	118.19	171.87	53.73	41.25	Gly353	9.50	120.53	173.21	45.49	-
Met303	9.06	120.35	173.08	52.45	35.58	Gln354	9.00	126.96	173.34	55.11	28.47
Arg304	9.06	125.11	173.31	53.24	32.97	Asn355	8.03	119.50	172.75	51.50	38.96
Thr305	9.03	120.21	170.89	59.12	68.89	Val356	8.68	127.20	175.05	61.30	30.08
Asn306	8.94	125.39	172.57	49.34	39.78	Leu357	8.31	132.13	175.67	54.29	40.35
Pro307	-	n.d.	175.32	62.68	30.48	His358	8.71	121.26	174.57	55.78	27.39
Phe308	8.44	118.62	173.71	56.74	37.79	Gly359	8.62	113.57	171.01	43.31	-
Tyr309	7.93	121.48	173.10	53.47	37.97	Tyr360	7.30	118.93	171.81	55.45	36.49
Pro310	-	n.d.	175.27	62.49	30.14	Pro361	-	n.d.	173.85	59.98	n.d.
Glu311	7.85	121.33	174.38	54.88	29.38	Lys362	7.86	120.86	172.99	52.92	35.64
Val312	8.42	125.82	173.30	60.42	31.43	Asp363	8.20	119.75	176.53	51.68	42.31
Glu313	8.33	130.87	172.15	53.78	30.03	Ile364	7.98	114.71	174.86	63.12	-
Leu314	8.25	131.05	173.91	52.31	43.07	Tyr365	7.61	127.10	177.64	59.10	34.91
Asn315	7.93	124.99	171.60	49.46	40.57	Ser366	9.55	118.77	175.48	59.23	60.63
Phe316	8.95	120.95	1/6.17	56.09	37.99	Ser36/	6.96	116.53	172.40	59.48	62.13
	8.94	127.76	1/5./5	65.63	n.d.	Phe368	7.03	116.41	1/3.44	36.56	39.51
Ser318	8.64	113.04	1/3./6	58.67	01.51	GIY369	1.51	105.19	1/4.54	44.21	-
Val319	/.38	121.84	1/4./3	03.13	30.27	Pne3/0	0.30	11/.55	1/1.48	30.30	37.35
Pne320	/.14	123.28	1/3.91	57.93	38.85	Pro3/1	-	n.d.	174.12	5(10	30.89
1 rp 321	8.27	110.33	1/1.//	33.37 62.10	20.55	Arg5/2	8.38	107.22	174.15	30.19	21.23
PT0322	-	n.a.	1/0.33	03.18	30.33	11113/3	0.98	107.22	1/4.23	00.05	07.08

Suppl. Table S2. Chemical Shift Assignments for HPX-1 at pH 4.8 and $25^\circ C.$

Residue	Н	Ν	С	Са	Сβ	Residue	Н	Ν	С	Са	Сβ
Val374	7.76	126.03	173.49	62.18	30.00	Ile422	7.46	110.33	171.60	42.70	n.d.
Lys375	8.88	129.27	173.46	54.23	32.31	Gly423	7.98	116.66	171.52	53.69	29.69
His376	7.22	114.07	170.14	52.77	29.86	His424	7.28	120.19	172.14	53.64	33.79
Ile377	10.10	125.53	173.19	57.45	n.d.	Lys425	9.97	128.78	173.73	60.16	32.91
Asp378	8.52	124.99	173.99	55.04	n.d.	Val426	9.14	127.14	174.77	54.06	39.86
Ala379	7.93	120.33	173.42	50.58	21.17	Asp427	7.94	121.84	172.72	49.89	20.68
Ala380	8.91	126.33	172.15	50.14	22.56	Ala428	8.45	121.21	169.21	57.77	32.20
Leu381	8.08	117.99	171.24	53.51	43.80	Val429	7.81	120.48	169.35	55.02	39.34
Ser382	8.69	120.32	172.65	55.37	63.71	Phe430	8.83	122.86	173.10	52.36	34.09
Glu383	9.17	132.87	175.14	54.54	29.82	Met431	8.85	126.97	174.11	55.69	35.37
Glu384	8.23	131.5	175.72	57.2	28.45	Lys432	9.94	130.05	173.35	54.27	38.61
Asn385	9.15	117.66	174.63	54.39	36.68	Asp433	8.65	104.21	171.81	43.57	n.d.
Thr386	7.79	109.77	174.78	60.47	69.79	Gly434	7.81	119.29	173.13	55.59	39.97
Gly387	8.52	112.88	170.17	44.82	-	Phe435	8.82	121.14	172.37	52.12	38.12
Lys388	7.73	117.59	173.49	51.30	32.04	Phe436	8.71	124.56	172.68	56.02	36.88
Thr389	9.31	124.54	170.84	58.66	68.85	Tyr437	8.73	122.34	174.30	56.20	41.89
Tyr390	8.93	127.90	172.02	54.61	39.31	Phe438	8.95	121.01	174.44	55.33	39.30
Phe391	8.67	121.11	173.05	54.54	n.d.	Phe439	9.19	124.05	173.30	54.06	29.40
Phe392	8.99	125.00	173.31	57.01	n.d.	His440	9.93	123.62	173.22	45.51	n.d.
Val393	9.52	127.54	172.94	60.83	33.73	Gly441	8.52	118.00	173.01	60.55	67.19
Ala394	9.53	134.36	172.96	52.78	15.28	Thr442	8.12	125.00	171.55	54.50	30.98
Asn395	8.37	118.24	173.90	52.08	36.35	Arg443	8.01	123.40	172.07	50.91	n.d.
Lys396	8.56	124.01	172.00	54.12	n.d.	Gln444	9.64	128.68	173.05	54.40	31.57
Tyr397	9.10	116.62	170.54	55.01	41.23	Tyr445	8.29	127.37	172.09	54.07	32.80
Trp398	9.41	124.29	172.91	56.87	n.d.	Lys446	9.83	133.75	171.76	55.32	42.21
Arg399	7.61	116.59	169.70	52.56	n.d.	Phe447	8.40	130.05	172.97	48.60	41.50
Tyr400	9.56	132.31	170.97	55.48	41.91	Asp448	7.46	110.33	171.60	42.70	n.d.
Asp401	7.71	129.13	174.28	51.29	42.00	Pro449	-	n.d.	176.01	62.09	30.83
Glu402	8.92	125.41	176.84	55.99	n.d.	Lys450	8.02	119.82	176.59	57.45	30.43
Tyr403	8.06	119.34	177.06	57.95	35.79	Thr451	6.82	107.76	172.92	59.72	68.54
Lys404	8.81	122.53	175.00	55.44	31.29	Lys452	7.94	120.25	172.41	55.68	27.55
Arg405	7.91	118.16	173.67	55.14	24.70	Arg453	6.53	116.55	173.58	52.66	32.30
Ser406	6.96	112.04	172.39	55.26	64.13	Ile454	8.47	123.26	174.85	59.64	37.08
Met407	9.04	127.42	175.46	54.04	n.d.	Leu455	9.23	130.72	175.92	54.49	41.83
Asp408	8.68	129.52	n.d.	52.05	38.37	Thr456	7.14	111.20	169.43	59.20	70.23
Pro409	-	n.d.	176.30	61.47	30.60	Leu457	8.22	128.32	174.29	52.74	41.97
Gly410	8.64	110.15	171.52	43.89	-	Gln458	9.06	125.91	174.03	52.06	31.79
Tyr411	7.60	119.94	175.28	55.73	37.06	Lys459	8.63	122.62	177.79	54.62	31.73
Pro412	-	n.d.	n.d.	59.67	n.d.	Ala460	8.32	126.88	175.27	53.56	16.35
Lys413	7.96	120.99	173.40	53.10	35.44	Asn461	7.63	114.00	177.04	50.80	36.45
Met414	8.73	119.34	176.85	53.35	29.56	Ser462	7.35	117.19	173.93	61.02	n.d.
Ile415	8.57	128.09	175.92	65.26	37.82	Trp463	7.99	123.87	174.39	57.00	25.93
Ala416	9.19	119.61	177.08	52.45	16.85	Phe464	7.24	118.45	173.36	52.43	36.72
His417	6.96	113.50	174.14	56.15	28.53	Asn465	8.11	118.94	173.18	52.33	35.71
Asp418	6.85	117.70	172.51	53.37	40.36	Cys466	8.48	121.25	173.92	54.44	39.68
Phe419	8.42	120.81	169.66	52.77	36.15	Arg467	8.57	125.46	174.59	54.79	29.32
Pro420	-	n.d.	176.06	62.33	30.14	Lys468	8.40	125.25	173.80	54.80	31.55
Gly421	8.17	111.18	173.54	43.89	-	Asn469	8.00	127.70	177.86	53.13	38.83

Suppl. Table S2. Chemical Shift Assignments for HPX-1 at pH 4.8 and $25^\circ C$ (continued).

n.d. : not determined

Suppl. Figure S1: **SE AUC analysis of MMP-1 HPX domain.** Data recorded at (**A–C**) 15000rpm and (**D–F**) 18000rpm are shown for HPX concentrations of (**A**, **D**) 0.5mg/ml, (**B**, **E**) 1.0mg/ml and (**C**, **F**) 5.0mg/ml. For each, the calculated MW are shown and the residuals are displayed below. (**G**) Plot of apparent MW *versus* protein concentration for rotor speeds of 15000 and 18000 rpm. The horizontal dashed line indicates the theoretical MW of HPX-1 (23.6 kDa).

Suppl. Figure S2: SE AUC analysis of HPX:THP complex. Data recorded at 15000 rpm are shown for $\alpha 1(I)772-787$ THP:HPX molar ratios of (A) 0:1 (i.e. free HPX), (B) 1:1, (C) 2:1, (D) 5:1, (E) 10:1 and (F) 20:1. The apparent MW is displayed for each molar ratio. The residuals displayed beneath each plot are randomly dispersed showing a good fit of the model to the data.

Suppl. Figure S3. NMR-Monitored Titration of ¹⁵N-labelled HPX-1 with α 1(I)772–787 THP. Overlay of the ¹H,¹⁵N-HSQC spectra of free HPX-1 (in black) with the first six points from the α 1(I)772–787 THP titration (i.e. HPX-1:THP molar ratios of 1:0 to 1:1.2). Each spectrum has only one contour to highlight the loss of intensity upon addition of the THP. The inset portions show example losses of spectral intensity due to line broadening of the backbone ¹H_N-¹⁵N_H cross-peaks for (A) D299, (B) N326 and (C) G353.

¹H (ppm)

Suppl. Figure S4: NMR analysis of WT and mutant HPX-1 proteins. Extracts of the ${}^{1}H^{15}N$ -HSQC spectra of (A) WT HPX-1 (B) mutant HPX-1(F301A), and (C) HPX-1(V319A) are shown. Each spectrum was recorded at pH 4.8 and 25°C.

Suppl. Figure S5: SAXS analysis of proMMP-1*, MMP-1* and MMP-1*(F301A). (A-C) Experimental scattering data for (A) proMMP-1*, (B) MMP-1* and (C) MMP-1*(F301A). The logarithm of the scattering intensity is plotted against the momentum transfer. The overlayed red lines in (A) and (B) are scattering patterns simulated from the crystal structure coordinates of proMMP-1* and MMP-1*, respectively, using the program *CRYSOL*. (D, E) Orthogonal views of the average low resolution solution state models of (D) proMMP-1*, and (E) MMP-1* generated by *ab initio* modeling from the simulated scattering data (the red lines in parts (A) and (B), respectively). Each has been automatically overlaid over their crystal structures using the program *SUPCOMB*. In the crystal structures, the PRO domain is coloured red, the CAT domain green and the HPX domain blue. The good agreement between the crystal and simulated solution models validates the *ab initio* modeling technique.

