Table S1. Strains and plasmids used in this study. Trmp^R, trimethoprim resistance; Spec^R, spectinomycin resistance; Ery^R, erythromycin resistance; Tet^R, tetracycline resistance; Cm^R, chloramphenicol resistance; Amp^R, ampicillin resistance.

Strain/plasmid	Description	Reference or source		
S pneumoniae				
D39	Serotype 2 strain cps2	(1) Jab Pab Of P Hermans		
D39nisRK	D39 AbgaA: nisRK: Trmp ^R	(1), mo. 1 uo. 011. Herman		
AS1	D39 AaroR1	This work		
AS2	D39 AahrC	This work		
AS3	D39 AaroR1 AahrC	This work		
AS4	D39 AabnA	This work		
AS5	D39 AartP	This work		
AS6	D39 $AaanA$ · Spec ^R	This work This work		
AS7	D39 $AabaB$: Spec ^R	This work		
AS8	D39 AaliB: Frv ^R	This work		
AS9	D39 AahnA AartP	This work		
AS10	D39 AabnA AabnB' Snec ^R	This work		
AS11	D39 AabnR AartP: Spec ^R	This work		
AS12	D39 AabpA AartP AabpR: $Spec^{R}$	This work		
AS13	D39 AabnA AartP AabnB: Spec ^R AaliB: Frv ^R	This work		
AS14	D39 AartP D39 AaapA: Spec ^R	This work		
A\$15	D39 AboaA···PabnA-lacZ· Tet ^R Spec ^R	This work		
AS16	D39 $AaroR1$ AboaA···PabnA-lac7· Tet ^R Snec ^R	This work		
AS17	D39 AahrC AbgaA: PahpA-lac7: Tet ^R Spec ^R	This work		
AS18	D39 AaroR1 AahrC AboaA: PabnA-lacZ: Tet ^R Snec ^R	This work		
AS19	D39 AbgaA: PartP-lac7: Tet ^R Spec ^R	This work		
AS20	D39 $AaroR1$ AboaAPartP-lacZ. Tet Spec ^R	This work		
AS21	D39 AahrC AbgaA::PartP-lacZ: Tet ^R Spec ^R	This work		
A\$22	D39 AaroR1 AahrC AboaA: PartP-lac7: Tet ^R Spec ^R	This work		
AS23	D39 AboaA···PaanA-lacZ: Tet ^R Spec ^R	This work		
AS24	D39 $AargR1$ AbgaA: PaapA-lacZ: Tet ^R Spec ^R	This work		
AS25	D39 AahrC AbgaA: PaanA-lacZ: Tet ^R Spec ^R	This work		
AS26	D39 AargR1 AahrC AbgaA: PaanA-lacZ: Tel ^R Spec ^R	This work		
AS27	D39 AbgaA: PabnB-lacZ: Tet ^R Spec ^R	This work		
AS28	D39 $AargR1$ AbgaA: PabpB-lacZ: Tet ^R Spec ^R	This work		
AS29	D39 AahrC AbgaA::Pab B -lacZ: Tet ^R Spec ^R	This work		
AS30	D39 $AargR1 AahrC AbgaA::PabnB-lacZ: TetR SpecR$	This work		
AS31	D39 $\Delta bgaA::PaliB-lacZ: Tet^R Spec^R$	This work		
AS32	D39 $\Delta argR1 \Delta bgaA$::PaliB-lacZ: Tet ^R Spec ^R	This work		
AS33	D39 $\Delta ahrC \Delta bgaA$::PaliB-lacZ: Tet ^R Spec ^R	This work		
AS34	D39 <i>AargR1 AahrC AbgaA</i> ::PaliB-lacZ: Tet ^R Spec ^R	This work		
AS35	D39 $\Delta bgaA::PabpA-mut-lacZ: Tet^{R} Spec^{R}$	This work		
AS36	D39 $\Delta argR1 \Delta bgaA::PabpA-mut-lacZ; Tet^R Spec^R$	This work		
AS37	D39 $\Delta bgaA::PartP-mut-lacZ; Tet^R Spec^R$	This work		
AS38	D39 $\Delta argR1 \Delta bgaA::PartP-mut-lacZ; Tet^R Spec^R$	This work		
AS39	D39 $\Delta bgaA::PabpB-mut-lacZ: Tet^{R} Spec^{R}$	This work		
AS40	D39 $\Delta argR1 \Delta bgaA::PabpB-mut-lacZ; Tet^R Spec^R$	This work		
AS41	D39 $\Delta bgaA::PaliB-mut-lacZ; Tet^R Spec^R$	This work		
AS42	D39 $\Delta argR1 \Delta bgaA::PaliB-mut-lacZ; Tet^R Spec^R$	This work		
AS43	D39 $\Delta bgaA::ParcA-lacZ; Tet^{R} Spec^{R}$	This work		
AS44	D39 $\Delta argR1 \Delta bgaA:: ParcA-lacZ; Tet^R Spec^R$	This work		
AS45	D39 ДаhrC ДbgaA:: ParcA-lacZ; Tet ^R Spec ^R	This work		
AS46	D39 <i>DargR1 DahrC DbgaA</i> :: ParcA-lacZ; Tet ^R Spec ^R	This work		
AS47	D39 <i>AbgaA</i> ::Parc-mut-lacZ; Tet ^R Spec ^R	This work		
AS48	D39 <i>DargR1 DbgaA</i> ::ParcA-mut-lacZ; Tet ^R Spec ^R	This work		
AS49	D39 ДаhrC ДbgaA::ParcA-mut-lacZ; Tet ^R Spec ^R	This work		
AS50	D39 <i>DargR1 DahrC DbgaA</i> ::ParAc-mut-lacZ; Tet ^R Spec ^R	This work		
	•			

L. lactis NZ9000

MG1363 ∆pepN::nisRK

E. coli

copy of the pWV01 <i>repA</i> gene in <i>glgB</i>	
Plasmids	
pNZ8048 Cm ^R ; Nisin-inducible PnisA	(5)
pNG8048E $Cm^{R} Ery^{R}$; Nisin-inducible PnisA, pNZ8048 derivative containing ery^{R}	gene Laboratory collection
to facilitate cloning	
pORI280 Em^{R} ; $ori^{+} repA^{-}$; deletion derivative of pWV01; constitutive lacZ	(4)
expression from P32 promoter	
pPP2 Amp ^R Tet ^R ; promoter-less <i>lacZ</i> . For replacement of <i>bgaA</i> (<i>spr0565</i>)	(6)
with promoter-lacZ fusions. Derivative of pTP1.	
pAS1 pORI280 $\Delta argR1$	This work
pAS2 pORI280 $\Delta ahrC$	This work
pAS3 pORI280 <i>AabpA</i>	This work
pAS4 pORI280 AartP	This work
pAS5 pPP2 PabpA-lacZ	This work
pAS6 pPP2 PartP-lacZ	This work
pAS7 pPP2 PaapA-lacZ	This work
pAS8 pPP2 PabpB-lacZ	This work
pAS9 pPP2 PaliB-lacZ	This work
pAS10 pPP2 PabpA-mut-lacZ	This work
pAS11 pPP2 PartP-mut-lacZ	This work
pAS12 pPP2 PabpB-mut-lacZ	This work
pAS13 pPP2 PaliB-mut-lacZ	This work
pAS13 pPP2 ParcA-lacZ	This work
pAS14 pPP2 ParcA-mut-lacZ	This work
pAS15 pNG8048E carrying <i>strep-ahrC</i> downstream of <i>PnisA</i>	This work
pAS16 pNG8048E carrying <i>strep-argR1</i> downstream of PnisA	This work

Table S2. Oligonucleotide primers used in this study.

Name	Nucleotide sequence (5' to 3');	Restriction
	restriction enzyme sites under mieu	site
ahrC_D39_KO1	TGCTCTAGATAAGGAAAGAGTGGATGTAC	XbaI
ahrC_D39_KO2	CTCTTTTTTATTCATTTTTAAATTG	-
ahrC_D39_KO3	TTAAAAATGAATAAAAAAGAGGAACAAGTAAAAAATTGGTAGG	-
ahrC_D39_KO4	GAAGATCTACTCTTCGACACTTTCCATG	BglII
argR_KO-1	TGCTCTAGACCATTCGCGCGCTTCTTCATCC	XbaI
argR_KO-2	CGGGATCCTTTATTAACTGATGACGATCTC	BamHI
argR_KO-3	CATGCCATGGGTAAGGTCTTGGGAGTTGC	NcoI
argR_KO-4	GAAGATCTGGTCGCATAATCCATCTGC	BglII
Pspd_0109_1	CGGAATTCCATTGAATTGGGCGAGGG	EcoRI
Pspd_0109_2	CGGGATCCAGCATCACTAAACCAAAC	BamHI
SPD_0109_KO1	TGCTCTAGAGATTTTAGAGAGAGTAGG	XbaI
SPD_0109_KO2	CCCCAGACTCCTTCAACTTCATCGTCATCAACACCTTC	-
SPD_0109_KO3	AAGTTGAAGGAGTCTGGGG	-
SPD_0109_KO4	CGGAATTCCACGAACTGGAGCAATCAC	EcoRI
Pspd_0109_mut1	GGGTAAAAAAGAATAAACATAAAG	-
Pspd_0109_mut2	CTTTATGTTTATTCTTTTTACCCTATAAATAATAATACTCCTATAC	-
Pspd_0109_2.2	CGGGATCCGATGGCTTCAATTCCAGCC	BamHI
Pspd_0719_1	CGGAATTCCGCCATCGTTTGCCATTGC	EcoRI
Pspd_0719_2	CGGGATCCCCCAAAAAGATAACACAG	BamHI
Pspd_0719_mut1	GGGAACATGTTATAATCATACAG	-
Pspd_0719_mut2	CTGTATGATTATAACATGTTCCCAATTAAAATTTAAATTTTATCC	-
SPD_719KO_1	TGCTCTAGACTCATTATAACAGGATTGG	XbaI
SPD_719KO_2	CCCCATAGTTAAAATAAGG	-
SPD_719KO_3	CCTTATTTTAACTATGGGGCCTCTATTCTGACAGTAGC	-
SPD_719KO_4	GAAGATCTCAAGGTCTTGCATAACAGCC	BglII
Pspd_0887-1	CGGAATTCCTTGATATATAAGGGTTC	EcoRI
Pspd_0887-2	CGGGATCCCCATGGCTCCAATACC	BamHI
SPD_0887-KO1	TCCTACAGAATATTTAATTG	-
SPD_0887-KO2	TCCTCCTCACTATTTTGATTAGCTGTTTTATCTAAACTAAC	-
SPD_0887-KO3	CGTTTTAGCGTTTATTTCGTTTAGTGGCTATAAGCATTCTACC	-
SPD_0887-KO4	CAGAAGCCTCTAAGACC	-

Pspd_1226_1	CGGAATTCAAACAGGTAAGATTGTCG	EcoRI
Pspd_1226_2	CGGGATCCCTAAGAAGAAACTTGCAAG	BamHI
Pspd_1226_mut1	GGGAATTAACAGAGAGGTTGTTTATTTATG	EcoRI
Pspd_1226_mut2	AACAACCTCTCTGTTAATTCCCTATAATTATAACGATATC	-
Pspd_1226_2.2	CGGGATCCAATGGCCTCAACAGCTGAC	BamHI
SPD_1226_KO1	TGCTCTAGAGCATCCCAGCTGTAGAGG	-
SPD_1226_KO2	TCCTCCTCACTATTTTGATTAGGAAAACTTGCAAGAAAATTAC	-
SPD_1226_KO3	CGTTTTAGCGTTTATTTCGTTTAGTCTAACTGAAGTTGAAGAATAAG	-
SPD_1226_KO4	CAAACCTTCCACTATCTTG	-
Pspd_1357_1	CGGAATTCAATCTTTTAGGAGAACTTG	EcoRI
Pspd_1357_2	CGGGATCCCCAAGGTTAGATATTTGC	BamHI
Pspd_1357_mut1	GGGATATTTAAAGCAGGAGG	-
Pspd_1357_mut2	CCTGCTTTAAATATCCCTTTTATTATACAACTCTGGG	-
Pspd_1357_2.2	CGGGATCCCAGTGCTAGAATTTCCAC	BamHI
SPD_1357_KO-1	TTTAATCAGTTTGCTGACC	-
SPD_1357_KO-2	GAGATCTAATCGATGCATGCGCCAAGGTTAGATATTTGC	-
SPD_1357_KO-3	AGTTATCGGCATAATCGTTAAGCTAGAGAAAAATGGTTG	-
SPD_1357_KO-4	AGAAGTCAACTCCCC	-
AhrC_OX_1_strep	CGAGCCATCATGAGCGCTTGGAGCCATCCACAATTTGAAAAAAAA	RcaI
AhrC_OX_2	TGCTCTAGACAAGTAACATATAGACCTACC	XbaI
ArgR1_OX_1_strep	CGAGCCATCATGAGCGCTTGGAGCCATCCACAATTTGAAAAAAGAAAAAGAGATCGTCATCAG	RcaI
ArgR1_OX_2	TGCTCTAGAGAGCAACTCCCAAGACCTTAC	XbaI
Pspd_1049-1	CGGGATCCATCACCTCTTCTCCC	BamHI
Pspd_1049-2	TGCTCTAGATGAAGCAGCAGCTCGCG	XbaI
RNlacZ-fw	GGTTTTCCCAGTCACGACGTTGTAA	-
Eryfor	TAACGATTATGCCGATAACT	-
Eryrev	GCATGCATCGATTAGATCTC	-
Spec_Fp	CTAATCAAAATAGTGAGGAGG	-
Spec_Rp	ACTAAACGAAATAAACGC	-
ParcA_ccpA_mut-1	CGGAATTCGCGGTTTGATTTTCTTCATC	EcoRI
ParcA_ccpA_mut-2	GGCACCATTTTGGGTAC <i>AAA</i> TTACATGTATATTATAACGC	-
ParcA_ccpA_mut-3	TTTGTACCCAAAATGGTGCCAAGTC	-
ParcA_ccpA_mut-4	CGGGATCCCTGGACGGTGCAACATAAC	BamHI
aRT-PCR		gene
metG D39-1	ATCCGTACAACTGATGAC	metG
metG-D39-2	TTCTGCCAGCTGGCTTTC	
Spd 0109-qRT-1	GACAATGTACTGGCTAGCG	abpA
Spd 0109-gRT-2	TTTGCAGTATAGTAGGGAGTTG	1
Spd 0719-gRT-1	GCTCCGACTATTCAGATTGG	artP
Spd 0719-gRT-2	CGGCACGAACAATCTCC	
Spd_0887-aRT-1	CTGCCTTGTGTGTGGG	aanA
Spd_0887-gRT-1	TAACCAACCAGCCAACC	crap: 1
Spd_1226-aRT-1	GGTTAAGTTGGAAATCTCAAGC	abnR
Spd_1226-qRT-2	CAAGACTICTTTCTCTCGTC	моры
Spd_1220 qRT-1	CATCATTAGCAGAGGATTGG	aliB
Spd 1357-gRT-2	GCATATTCTTCTCCCTCAGAAG	
~r		

Table S3. Results of qRT-PCRs for *abpA*, *abpB*, *aapA*, *aliB* and *artP* on RNA (isolated as described in the Experimental Procedures) from D39 wild-type grown in CDM containing either 0.05 mM or 10 mM arginine, and from the *argR*, *ahrC* and *argR1ahrC* mutants grown in CDM containing 10 mM arginine. The procedure as described by Carvalho *et al.* (7) was followed. The data were normalized to the level of *metG* (*spd_0689*), which was unchanged across all microarray conditions. Primers used are listed in Table S2. Values are the averages of three measurements. Standard deviations are in parentheses.

ratio		gene				
Tauo	abpA	artP	aapA	abpB	aliB	
D39 0.05 mM/D39 10 mM	8.9 (1.1)	1.7 (0.2)	1.6 (0.1)	2.2 (0.1)	2.1 (0.2)	
<i>argR1</i> /D39	33.7 (1.1)	1.9 (0.1)	1.9 (0.1)	3.0 (0.3)	3.2 (0.3)	
ahrC/D39	36.2 (4.9)	2.1 (0.3)	2.2 (0.1)	5.5 (0.7)	3.3 (0.1)	
<i>argR1-ahrC</i> /D39	39.4 (5.5)	2.0 (0.1)	2.1 (0.2)	5.8 (0.3)	3.7 (0.2)	

Table S4. Specific activity (Miller Units) of the indicated promoter-*lacZ* fusions in different media. Fig. 4A presents a bar diagram of these data. See legend of Fig. 4A for more details.

	Miller Units			Miller Units Standard Deviation		ntion	
strain	GM17	CDM 10	CDM 0.025		GM17	CDM10	CDM 0.025
wt abpA	0.6	0.8	3.5		0.1	0.2	0.5
R abpA	101.0	93.0	127.0		14.0	17.0	21.0
C abpA	112.0	109.0	136.0		16.0	12.0	17.0
RC abpA	129.0	112.0	116.0		17.0	11.0	13.0
wt artP	13.0	19.0	38.0		2.0	2.5	4.0
R artP	76.0	74.0	80.0		10.0	8.0	11.0
C artP	82.0	92.0	91.0		12.0	11.0	9.0
RC artP	74.0	90.0	104.0		14.0	9.0	16.0
wt aapA	4.2	7.0	12.5		0.8	1.0	1.5
R aapA	32.0	33.0	29.0		4.0	5.0	3.0
C aapA	38.0	32.0	30.0		6.0	4.0	5.0
RC aapA	43.0	42.0	38.0		5.0	4.0	7.0
wt abpB	14.0	23.0	62.0		2.5	4.0	4.0
R abpB	374.0	363.0	389.0		29.0	32.0	43.0
C abpB	401.0	430.0	480.0		34.0	57.0	77.0
RC abpB	438.0	395.0	405.0		63.0	50.0	41.0
wt aliB	51.0	76.0	119.0		8.0	5.0	11.0
R aliB	197.0	170.0	182.0		28.0	22.0	20.0
C aliB	245.0	183.0	193.0		34.0	17.0	17.0
RC aliB	171.0	190.0	168.0		18.0	26.0	19.0

Reference List

- 1. Avery, O. T., Macleod, C. M., and McCarty, M. (1944) Mol. Med. 1, 344-365
- 2. Kloosterman, T. G., Bijlsma, J. J. E., Kok, J., and Kuipers, O. P. (2006) *Microbiology* **152**, 351-359
- 3. Kuipers, O. P., Ruyter, P. G., Kleerebezem, M., and Vos, W. M. (1998) *J. Biotechnol.* 64, 15-21
- 4. Leenhouts, K., Buist, G., Bolhuis, A., ten Berge, A., Kiel, J., Mierau, I., Dabrowska, M., Venema, G., and Kok, J. (1996) *Mol. Gen. Genet.* **253**, 217-224
- 5. de Ruyter, P. G., Kuipers, O. P., and de Vos, W. M. (1996) *Appl. Environ. Microbiol.* **62**, 3662-3667
- 6. Kovacs, M., Halfmann, A., Fedtke, I., Heintz, M., Peschel, A., Vollmer, W., Hakenbeck, R., and Bruckner, R. (2006) *J. Bacteriol.* **188**, 5797-5805
- 7. Carvalho, S. M., Kloosterman, T. G., Kuipers, O. P., and Neves, A. R. (2011) CcpA ensures optimal metabolic fitness of *Streptococcus pneumoniae* D39.