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Simulation of Model Spherical Micelles (MSMs). We perform mole-
cular dynamics simulations in the canonical ensemble (constant
number of particles, volume, and temperature) of the MSMs
using the LAMMPS molecular simulation package (1) with per-
iodic boundary conditions and reduced Lennard–Jones (LJ) units
(2). The Nose–Hoover thermostat is used with T ¼ 1.0 and
time step ¼ 0.005. The simulations that we report in this work
are performed at a nominal volume fraction, ϕ ≈ 0.54, computed
assuming micelles are space-excluding spheres of diameter 5.27σ.
ϕ ≈ 0.54 is chosen because it is comparable to the volume fraction
of state points observed to form spherical micelles in previous
simulations of tethered nanospheres (TNSs) (3). A cursory sen-
sitivity analysis, performed by starting from an assembled sigma
phase at k ¼ 5 and either slowing increasing or slowly decreasing
the box size predicts that the sigma phase is physically stable with-
in a range of nominal volume fractions 0.47 ≤ ϕ ≤ 0.57, for the
specific MSM parameters used in this study. In practice, the ef-
fective micelle volume fraction will be lower than the nominal
volume fraction, because the micelles have a bumpy, soft corona
and will overlap to form dimers. For example, if we account for
dimers, the volume fraction is reduced from 0.54 to 0.46 for a
system with f dimer ¼ 0.25, assuming dimers are sphero-cylinders
of length 6.72σ and diameter 5.27σ. In Fig. S1 we provide a sche-
matic of the MSM, depicting the approximate micelle corona and
core sizes, as well as the dimer to monomer size ratios, for the
MSM simulations investigated in this paper.

As discussed in the main text, surface particles interact via the
purely repulsive Weeks–Chandler–Andersen (WCA) potential,
meant to capture excluded volume. The WCA potential follows
the form (4)
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where Us ¼ −ϵ and the interaction cutoff rc is set to 21∕6. α is an
adjustable shifting parameter, set to zero here. Surface particles
are held to their scaffold sites with harmonic springs, defined as
UðrÞ ¼ kr2, following the convention in LAMMPS (1). The gen-
eral simulation procedure is as follows: Simulations are initialized
by creating a random arrangement of MSMs under dilute condi-
tions (ϕ < 0.1) with k ¼ 10; the system is then slowly compressed
until the target box size is reached. Starting from the target box
size, MSMs are simulated with k ¼ 2 and further allowed to dis-
order. k is then incrementally increased by 0.25 until the final va-
lue is reached (typically, k ¼ 4 to 5). For each value of k, the
system is run for 10 to 50 million time steps (large systems are
run for longer than small systems). Simulations are typically
run for between 50 and 500 million total time steps. This proce-
dure of slowly increasing kmimics the procedure used to simulate
TNSs, discussed below. Note, our simulations did not span long
enough time scales to observe tile rearrangements in the ordered
solid phases.

Simulation of TNSs.We perform Brownian dynamics simulations in
the canonical ensemble of the TNS system with periodic bound-
ary conditions and reduced LJ units. The mono-TNS building
block used consists of a chain of eight spherical beads of diameter
σ, connected via finitely extensible nonlinear elastic (FENE)
springs (3, 5). Each chain is attached with a FENE spring to a
larger “nanosphere” of diameter D ¼ 2.5σ. The potential energy

of the FENE spring is given by
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where k is the spring constant, r is the interparticle separation, Ro
is the maximum allowable separation, and α is an adjustable shift-
ing parameter to account for excluded volume of the nanosphere.
For this study, k ¼ 30 and Ro ¼ 1.5, and α ¼ 0.75 for the bond
connecting the chain to the nanosphere, and zero otherwise.
Tethers are treated as “solvent-phobic” and thus aggregate at suf-
ficiently low T. To model this aggregation, the attractive LJ po-
tential is used, give by Eq. S1, but with Us set to the energy at the
cutoff and rc ¼ 2.5. All other interactions are modeled by the
purely repulsive WCA potential (Eq. S1, with Us ¼ −ϵ and
rc ¼ 21∕6), appropriately radially shifted to account for excluded
volume; for tether-nanopshere interactions α ¼ 0.75σ and for na-
nosphere-nanosphere interactions α ¼ 1.5σ. Simulations are per-
formed using the Brownian dynamics thermostat, where the
volume fraction of the excluded volume of the individual beads
is varied between 0.25 ≤ ϕ ≤ 0.30, the range where spherical mi-
celles were predicted in previous work (3). This translates to a
nominal micelle volume fraction of approximately 0.52, calcu-
lated assuming a characteristic diameter of 12σ for the spherical
micelles (approximated from the radial distribution function for
micelle centers).

Di-TNSs are modeled in much the same way as mono-TNSs
described above. Chains composed of four beads of diameter
σ are connected via FENE springs (Eq. S2). Two chains are con-
nected to a single nanosphere of diameter D ¼ 2.0σ, diametri-
cally opposed. This planar angle of 180° between the chains is
maintained by the use of a harmonic spring between the first
beads of the two polymers, with k ¼ 60 and equilibrium separa-
tion set to 3σ. The two polymer chains are chemically distinct.
One chain is considered to be solvent-phobic (i.e., attractive),
and thus is modeled by the LJ potential. The other chain is con-
sidered to be solvent-philic (i.e., nonattractive) and modeled by
the WCA potential. Nanosphere-nanosphere interactions are
modeled with the LJ potential, appropriately radially shifted to
account for excluded volume (α ¼ 1.0). All other interactions
are modeled by the WCA potential, appropriately radially shifted
(α ¼ 0.5 for tether-nanosphere interactions). Simulations are
performed at ϕ ¼ 0.20, as calculated from the excluded volume
of the individual beads. In Fig. S2, we plot the asphericity histo-
gram of the micelles formed by the di-TNS system. We note the
asphericity histogram closesly matches the result obtained for the
mono-TNS system shown in Fig. 3D of the main text.

The general simulation procedure used is identical for both
mono- and di-TNS. Systems start from a disordered mixture of
TNS, well above the order-disorder temperature where little-
to-no aggregation occurs (T ¼ 2.0). Systems are then incremen-
tally cooled to their final temperature (T ≈ 1.0), where systems
are run for several million time steps at each incremental tem-
perature. The potential energy is monitored to ensure a steady
state is reached before additional cooling. As the temperature
is reduced, individual TNS slowly aggregate into micelles; mi-
celles form ordered structures at sufficiently low T. Simulations
are typically run for a total of 40 million time steps. Multiple in-
dependent cooling sequences are performed to ensure reprodu-
cibility of results. Simulations of mono-TNS are performed for
systems of 2,500 building blocks in cubic boxes (22,500 total
beads) and 5,000 building blocks in boxes with aspect ratio
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2∶2∶1 (45,000 total beads). Simulations of di-TNS are performed
in cubic boxes for systems of 2,000 building blocks. See refs. 3 and
5–7 for additional details regarding the simulation of TNS. Note,
our simulations did not span long enough time scales to observe
tile rearrangements in the ordered solid phases.

Free Energy of MSMs.We investigate how surface particle mobility
affects the stability of MSMs in various crystal structures (Fig. 4A)
by calculating the change in Helmholtz free energy F as a func-
tion of the strength of the harmonic springs (i.e., k) that anchor
particles to the micelle surface, using free-energy perturbation
(FEP) (8). For each structure, the calculation is split into eight
independent stages to avoid asymmetric bias (9), consisting of
equilibrium simulations with spring constants k ¼ 3;4…10. With-
in each stage, we compute the ensemble average:
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which gives the free energy difference between stage i and j,
where j ¼ i� 1. Each stage consists of a molecular dynamics si-
mulation (1) in the canonical ensemble at T ¼ 1.0 and micelle
nominal volume fraction ϕ ≈ 0.54 to match the simulations.
The vertical offset between the curves for different structures
is computed using a FEP variant of the standard Frenkel–Ladd
lattice coupling expansion thermodynamic integration (TI) meth-
od for molecular systems (2, 10). We use FEP to adapt the meth-
od to the complex objects considered here. Although this method
is nonstandard, it gives reasonable estimates of F that are con-
sistent with our self-assembly results. We note this calculation
only effects the vertical offset of the curves and not how F
changes as a function of k.

Free Energy of Sphere/Dimer Mixtures. The free energy for mixtures
of WCA spheres and dimers is evaluated using a three-step
scheme based on the standard Einstein crystal TI method for
spherical particles (2, 11, 12), plus an additional alchemical
(13) step to convert a given fraction of the spheres into dimers.
Because systems of WCA spheres do not act like harmonic crys-
tals for many of the structures tested, we use the Dzugutov (DZ)
(14) system as a convenient reference system that gives harmonic
behavior. Computing the work required to change the particle
interactions from the DZ potential to the WCA potential consti-
tutes the third step of our scheme.

In the first step, we compute the free energy difference be-
tween a noninteracting harmonic (Einstein) crystal and a system
of spherical particles interacting with the DZ potential using the
standard Frenkel–Ladd method (2, 11, 12). We denote this free
energy difference ΔFI ¼ FDZ − FEin.

In the second step, we compute the work required to change a
given fraction, f d of the spherical particles in the system into di-
mers. We consider a system with the energy function

UðλÞII ¼ ð1 − λÞUpure þ λUmix: [S4]

The free energy required to change the system of DZ spheres (pure)
to a mixture of DZ spheres and dimers (mix) is the integral over the
derivative with respect to the so-called switching parameter λ:
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The third step is to compute the work required to change the po-
tential from DZ to the WCA potential. We consider a system with
the energy function

UðλÞIII ¼ ð1 − λÞUDZ þ λUWCA: [S6]

The free energy difference for changing the interaction potential is
given by integrating over the derivative with respect to the switching
parameter λ:
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For all calculations, we run 20 independent MC simulations for
different values of λ to estimate δUðλÞ∕δλ, and obtainΔF by numer-
ical integration. Simulations are selectively carried out where
jδ2UðλÞ∕δλ2j is the largest. For systems that contain dimers, each
simulation begins with a compression run with particles constrained
to their lattice positions allowing rotations and swaps before equili-
brating at constant density. The total free energy for a sphere/dimer
mixture is given by

F ¼ FEin þ ΔFI þ ΔFII þ ΔFIII: [S8]

This formula is used to evaluate F for the WCA system, shown
in Fig. 4B.

Isosurface Generation. Representative configurations from self-
assembly simulations are plotted as time-averaged isosurfaces
to coarse-grain over thermal fluctuations and produce a clearer
picture of the structure. To generate the isosurfaces, we replace
the centroids of the MSMs (or aggregating tethers in the case of
TNS) with a normalized Gaussian of width 1.5σ, mapped to a
voxel grid composed of cells of length 1σ, to achieve a degree
of spatial coarse-graining. We then average the voxel data for ten
configurations generated within a time window that is much
shorter than diffusion timescales. This voxel data is then used to
create isosurfaces within the Visual Molecular Dynamics soft-
ware program (15), with an isovalue typically ranging between
0.1 and 0.2 for MSMs and between 4 and 6 for the TNS systems.

Clarifying Figures. In Fig. S3, we plot representative snapshots of
various sigma structures formed with the DZ potential, MSM
model, and mono- and di-TNS models. For all systems, we ob-
serve a characteristic tiling constructed of squares and triangles
from at least one perspective. Fig. S3 A and B depict point par-
ticle systems simulated using the DZ potential. Fig. S3A shows a
system of 60 point particles (i.e., an ideal number for forming the
sigma structure), with coordinates obtained by quenching to zero
temperature using LAMMPS. Fig. S3B is identical to S3A, how-
ever with 54 particles (i.e., a nonideal number of particles for the
sigma structure), highlighting slight changes to the tilings as a result
of reduced number of particles. Fig. S3C shows the MSM system,
Fig. S3D shows the mono-TNS system, and Fig. S3E shows the di-
TNS system. Fig. S3C corresponds to Fig. 2D in the main text, and
Figs. S3 C and D correspond to Fig. 2 B and F from the main text,
respectively. The slight differences we observe between the various
systems is likely related to nonidealities in system size, as we high-
lighted in the comparison between Fig. S3 A and B.

In Fig. S4, we plot multiple views of simulations of 360 building
block systems in boxes with aspect ratio 1.28∶1.28∶1 calculated
for the DZ system (Fig. S4A) quenched to zero temperature using
LAMMPS and the MSM system (Fig. S4B). Fig. S4A highlights
the fact that small systems often will demonstrate nonideal
arrangements of the tilings due to boundary effects, even for the
known quasicrystal forming DZ system. Fig. S4B corresponds to
the system plotted in Fig. 2E in the main text, where the xz plane
demonstrates quasi-12-fold symmetry (diffraction pattern shown
in Fig. 2E in the main text), and the xy and yz planes demonstrate
periodic ordering. Note, the simulation coordinate system is not
always coincident with ordering in the system and, as such,
labeled orientations are approximate in both Figs. S3 and S4.
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Fig. S1. (A) Histogram of the radial distance between the MSM centroid and its mobile surface spheres at k ¼ 5. (B) Based onA, a schematic of the relative size
ratio of the corona to micelle core in the MSM, where we find the micelle core diameter is roughly 4σ and the corona extends to a diameter of 7σ. (C) The radial
distribution function, gðrÞ, calculated between the centroids of MSMs arranged in a sigma structure at k ¼ 5. Note the first peak at approximately 2.75σ
corresponds to the center-to-center distance of two overlapping micelles (i.e., a dimer). The second peak at approximately 6σ corresponds to the spacing
between nonoverlapping micelles. (D) Schematic of the monomer and dimer size ratios, as derived from gðrÞ in C. All systems at nominal volume fraction
ϕ ¼ 0.54.

Fig. S2. Asphericity histogram of the sigma phase formed by the di-TNS system. Two representative micelles are inset in the plot along with an image of the
sigma phase formed by the di-TNSs.
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Fig. S3. Multiple perspectives of the representative sigma phases formed by (A) 60 particles interacting with the DZ potential at ϕ ¼ 0.44, (B) 54 particles
interacting with the DZ potential at ϕ ¼ 0.44, (C) 60 MSMs at nominal micelle volume fraction ϕ ¼ 0.54, (D) 2,500 mono-TNS building blocks at volume fraction
of the individual beads ϕ ¼ 0.275, and (E) 2,000 di-TNS building blocks at volume fraction of the individual beads ϕ ¼ 0.200. In all cases, structures are plotted
from multiple perspectives (note, the simulation coordinate system is not always coincident with ordering in the system and, as such, labeled orientations are
approximate). Particles inA and B are shown at roughly 75%of their true diameter. C–E are rendered in a similar fashion as in themain text; in C, isosurfaces are
constructed of monomer (gray) and dimer (cyan) centroids, and in D–E, isosurfaces are constructed of aggregating tethers (i.e., micelle cores).
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Fig. S4. Multiple perspectives of the representative structures formed by (A) 360 particles interacting with the DZ potential at volume fraction, ϕ ¼ 0.44, and
(B) 360MSMs at nominal micelle volume fraction ϕ ¼ 0.54. In both cases, systems have an aspect ratio of 1.28∶1.28∶1. Particles inA are shown at roughly 75% of
their true diameter, and MSMs are plotted as isosurfaces in B, where monomers centroids are colored gray and dimer centroids are cyan. The system in B
corresponds to Fig. 2E in the main text, where the xz plane was demonstrated to have quasi-12-fold symmetry.
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