SUPPLEMENTAL DATA

Identification of a new fatty acid synthesis-transport machinery at the peroxisomal membrane

Merle Hillebrand, Søren W. Gersting, Amelie S. Lotz-Havla, Annika Schäfer, Hendrik Rosewich, Oliver Valerius, Ania C. Muntau, Jutta Gärtner

Supplementary Table 1. Peptides of ALDP and PMP70 specific binding partners (ACLY, FASN) identified by subsequent LCMS analysis.

D. 6				D ()	Protein
Keterence	Peptide	MH+	z	P (pro)	Score
Scans				P (pep)	Xscore
gi 603074 gb AAB60340.1 ACLY				2,80E-09	266,24
1015-1017	R.AVQGMLDFDYVCSR.D	1660,74573	2	2,80E-09	4,70
1087	K.LGLVGVNLTLDGVK.S	1397,83618	2	5,84E-09	4,06
959	R.EAYPEEAYIADLDAK.S	1697,79053	2	1,13E-08	4,10
882	SGGMSNELNNIISR	1491,72205	2	4,00E-07	3,66
1092	LGLVGVNLTLDGVK	1397,83618	2	7,12E-07	3,76
965	R.KHPEVDVLINFASLR.S	1737,96460	3	3,01E-06	3,83
1139	TIAIIAEGIPEALTR	1567,90540	2	3,28E-06	4,32
1012	K.MIVVLGEIGGTEEYK.I	1637,84546	2	4,04E-06	4,71
1003	K.DGVYVLDLAAK.V	1163,63062	2	7,63E-06	3,04
958	KHPEVDVLINFASLR	1737,96460	3	1,04E-05	4,18
773	R.EGDYVLFHHEGGVDVGDVDAK.A	2258,03613	2	1,81E-05	4,00
447	K.HLLVHAPDDKK.E	1272,70593	2	4,09E-05	3,15
819	AIVWGMQTR	1061,55603	2	1,55E-04	2,53
1417	K.DLVSSLTSGLLTIGDR.F	1646,89600	2	2,38E-04	4,74
872	GVTIIGPATVGGIKPGCFK	1872,04114	2	2,53E-04	3,52
749	R.SGGM*SNELNNIISR.T	1507,72142	2	2,53E-04	3,72
744	R.SAYDSTMETM*NYAQIR.T	1896,81472	2	4,21E-04	3,51
482	RGGPNYQEGLR	1246,62866	2	1,19E-03	3,60
1000	DGVYVLDLAAK	1163,63062	1	1,59E-03	2,72
468	K. AKPAM*PQDSVPSPR.S	1496,75707	2	1,75E-03	2,74
1447	DLVSSLTSGLLTIGDR	1646,89600	2	2,35E-03	3,68
997	K.IGNTGGMLDNILASK.L	1503,78357	2	5,33E-03	4,24

717	R.TTDGVYEGVAIGGDR.Y	1509,71802	2	1,14E-02	3,84
744	SAYDSTM*ETMNYAQIR	1896,81472	2	2,02E-02	2,74
1018	R.DEPSVAAMVYPFTGDHK.Q	1863,85815	2	3,18E-02	2,52
1280	K.ILIIGGSIANFTNVAATFK.G	1950,10583	2	5,90E-02	3,47
1182	WGDIEFPPPFGR	1417,68994	2	6,16E-02	3,29
580-582	K.LYRPGSVAYVSR.S	1367,74304	3	6,42E-02	3,41
gi 68533031 dbj BAE06070.1 FASN				1,77E-08	238,23
786	R.FPQLDSTSFANSR.D	1469,70190	2	1,77E-08	3,54
756	R.QGVQVQVSTSNISSLEGAR.G	1960,00940	2	2,85E-07	4,62
849	K.VLQGDLVMNVYR.D	1406,74609	2	3,01E-07	3,88
749	K.VLQGDLVM*NVYR.D	1422,74545	2	3,28E-06	3,64
911	K.VVQVLAEEPEAVLK.G	1622,93640	2	3,41E-06	3,66
726	R.LQVVDQPLPVR.G	1263,74194	2	1,52E-05	3,65
761	SLLVNPEGPTLM*R	1442,77166	2	1,64E-05	2,96
763	R.AFEVSENGNLVVSGK.V	1549,78564	2	2,18E-05	3,18
561	K.ADEASELACPTPK.E	1388,63623	2	3,96E-05	3,04
893	R.SEGVVAVLLTK.K	1115,66699	2	2,01E-04	3,82
917	VVVQVLAEEPEAVLK	1622,93640	3	2,24E-04	4,45
569	K.VVEVLAGHGHLYSR.I	1536,82813	2	4,11E-04	3,05
527	DPSQQELPR	1069,52722	2	4,98E-04	2,95
854	K.MVVPGLDGAQIPR.D	1352,73547	2	5,54E-04	2,76
828	VAAAVDLIIK	1012,64014	2	5,59E-04	2,95
653	GNAGQSNYGFANSAMER	1773,76086	2	7,46E-04	4,19
668	K.EDGLAQQQTQLNLR.S	1613,82422	2	7,55E-04	4,12
691	R.GTHTGVWVGVSGSETSEALSR.D	2117,02588	3	3,13E-03	3,78
856	R.SLLVNPEGPTLMR.L	1426,77222	2	3,91E-03	3,15
791	FPQLDSTSFANSR	1469,70190	2	3,92E-03	3,23
499	VSVHVIEGDHR	1247,64917	2	9,72E-03	2,43
673	EDGLAQQQTQLNLR	1613,82422	2	5,44E-02	3,19
574	K.AQVADVVVSR.W	1043,58435	2	8,21E-02	3,10
823	R.VYATILNAGTNTDGFK.E	1684,85413	2	2,42E-01	3,45

Peptides of ACLY and FASN obtained by LCMS are listed including the molecular weight of charged peptides MH+, charge state z of peptides, probability value of the protein P (pro) and of the peptides P (pep), and the cross correlation scores X (Xscore).

PPI	protein 1	protein2	experiment1	experiment 2	mean
	Rluc-ALDP	YFP-FASN	0.11	0.09	0.10
	Rluc-ALDP	FASN-YFP	0.05	0.05	0.05
	ALDP-Rluc	YFP-FASN	0.07	0.08	0.08
	ALDP-Rluc	FASN-YFP	0.04	0.03	0.04
ALDP-FASN	Rluc-FASN	YFP-ALDP	0.02	0.02	0.02
	Rluc-FASN	ALDP-YFP	0.02	0.02	0.02
	FASN-Rluc	YFP-ALDP	0.11	0.08	0.09
	FASN-Rluc	ALDP-YFP	0.05	0.00	0.03
	Rluc-PMP70	YFP-FASN	0.08	0.14	0.11
	Rluc-PMP70	FASN-YFP	0.04	0.03	0.03
	PMP70-Rluc	YFP-FASN	low signal	low signal	
	PMP70-Rluc	FASN-YFP	low signal	low signal	
PMP/0-FASN	Rluc-FASN	YFP-PMP70	-0.01	-0.02	-0.01
	Rluc-FASN	PMP70-YFP	0.00	-0.03	-0.02
	FASN-Rluc	YFP-PMP70	0.05	0.08	0.07
	FASN-Rluc	PMP70-YFP	0.00	0.01	0.00
	Rluc-ALDP	YFP-ACLY	0.11	0.09	0.10
	Rluc-ALDP	ACLY-YFP	0.15	0.11	0.13
	ALDP-Rluc	YFP-ACLY	0.13	0.10	0.11
	ALDP-Rluc	ACLY-YFP	0.17	0.12	0.14
ALDP-ACL Y	Rluc-ACLY	YFP-ALDP	0.04	0.03	0.03
	Rluc-ACLY	ALDP-YFP	0.05	0.03	0.04
	ACLY-Rluc	YFP-ALDP	0.05	0.03	0.04
	ACLY-Rluc	ALDP-YFP	0.04	0.07	0.06
	Rluc-PMP70	YFP-ACLY	0.14	0.18	0.16
	Rluc-PMP70	ACLY-YFP	0.18	0.19	0.19
	PMP70-Rluc	YFP-ACLY	0.28	low signal	0.28
PMP70-ACLY	PMP70-Rluc	ACLY-YFP	0.38	0.39	0.39
	Rluc-ACLY	YFP-PMP70	0.02	0.04	0.03
	Rluc-ACLY	PMP70-YFP	0.04	0.02	0.03
	ACLY-Rluc	YFP-PMP70	0.03	0.08	0.05

Supplementary Table 2. BRET ratios derived from PPI studies among ALDP, PMP70, ACLY, FASN, FATP4, and ACC1.

	ACLY-Rluc	PMP70-YFP	0.02	0.03	0.02
	Rluc-FASN	YFP-ACLY	0.06	0.06	0.06
	Rluc-FASN	ACLY-YFP	0.05	0.05	0.05
	FASN-Rluc	YFP-ACLY	0.12	0.15	0.14
EACN ACL V	FASN-Rluc	ACLY-YFP	0.14	0.19	0.17
FASIN-ACL I	Rluc-ACLY	YFP-FASN	0.06	0.05	0.05
	Rluc-ACLY	FASN-YFP	0.03	0.02	0.02
	ACLY-Rluc	YFP-FASN	0.06	low signal	0.06
	ACLY-Rluc	FASN-YFP	0.02	low signal	0.02
	Rluc-ALDP	YFP-PMP70	0.06	0.05	0.06
	Rluc-ALDP	PMP70-YFP	0.04	0.03	0.04
	ALDP-Rluc	YFP-PMP70	0.07	0.05	0.06
	ALDP-Rluc	PMP70-YFP	0.04	0.03	0.04
ALDP-PMP70	Rluc-PMP70	YFP-ALDP	0.13	0.12	0.12
	Rluc-PMP70	ALDP-YFP	0.09	0.02	0.05
	PMP70-Rluc	YFP-ALDP	low signal	low signal	
	PMP70-Rluc	ALDP-YFP	low signal	low signal	
	Rluc-PMP70	YFP-PMP70	0.12	0.10	0.11
DMD70 DMD70	Rluc-PMP70	PMP70-YFP	0.02	0.04	0.03
FMIF/0-FMIF/0	PMP70-Rluc	YFP-PMP70	low signal	low signal	
	PMP70-Rluc	PMP70-YFP	low signal	low signal	
	Rluc-ALDP	YFP-ALDP	0.09	0.076	0.09
	Rluc-ALDP	ALDP-YFP	0.10	0.095	0.10
ALDP-ALDP	ALDP-Rluc	YFP-ALDP	0.16	0.206	0.16
	ALDP-Rluc	ALDP-YFP	0.53	0.496	0.51
	Rluc-ACLY	YFP-ACLY	0.19	0.16	0.17
	Rluc-ACLY	ACLY-YFP	0.18	0.16	0.17
ACL I-ACL I	ACLY-Rluc	YFP-ACLY	0.73	0.67	0.70
	ACLY-Rluc	ACLY-YFP	0.41	0.42	0.42
	Rluc-FASN	YFP-FASN	0.06	0.06	0.06
EACN EACN	Rluc-FASN	FASN-YFP	0.01	0.02	0.02
radin-radin	FASN-Rluc	YFP-FASN	0.11	0.11	0.11
	FASN-Rluc	FASN-YFP	0.03	0.05	0.04
	Rluc-ALDP	YFP-FATP4	0.08	0.08	0.08
ALDP-FATP4	Rluc-ALDP	FATP4-YFP	0.04	0.02	0.03

	ALDP-Rluc	YFP-FATP4	0.11	0.12	0.11
	ALDP-Rluc	FATP4-YFP	0.06	0.07	0.07
	Rluc-FATP4	YFP-ALDP	0.06	0.02	0.04
	Rluc-FATP4	ALDP-YFP	0.05	0.00	0.02
	FATP4-Rluc	YFP-ALDP	0.07	low signal	0.07
	FATP4-Rluc	ALDP-YFP	0.06	low signal	0.06
	Rluc-PMP70	YFP-FATP4	0.19	0.11	0.15
	Rluc-PMP70	FATP4-YFP	0.07	0.06	0.07
	PMP70-Rluc	YFP-FATP4	low signal	low signal	
DMD70 EATD4	PMP70-Rluc	FATP4-YFP	low signal	low signal	
гміг /0-гА1 г 4	Rluc-FATP4	YFP-PMP70	0.05	-0.01	0.02
	Rluc-FATP4	PMP70-YFP	0.05	0.04	0.05
	FATP4-Rluc	YFP-PMP70	0.07	low signal	0.07
	FATP4-Rluc	PMP70-YFP	0.04	-0.03	0.00
	Rluc-FASN	YFP-FATP4	0.03	0.03	0.03
	Rluc-FASN	FATP4-YFP	0.02	0.01	0.01
	FASN-Rluc	YFP-FATP4	0.04	0.10	0.07
EACN EATD4	FASN-Rluc	FATP4-YFP	0.02	0.02	0.02
FASN-FATP4	Rluc-FATP4	YFP-FASN	0.05	0.04	0.04
	Rluc-FATP4	FASN-YFP	0.03	0.02	0.02
	FATP4-Rluc	YFP-FASN	0.10	0.10	0.10
	FATP4-Rluc	FASN-YFP	0.03	0.02	0.02
	Rluc-ACLY	YFP-FATP4	0.02	0.03	0.03
	Rluc-ACLY	FATP4-YFP	0.02	0.02	0.02
	ACLY-Rluc	YFP-FATP4	0.02	0.02	0.02
ACLY EATD4	ACLY-Rluc	FATP4-YFP	0.00	0.00	0.00
ACL1-FAIF4	Rluc-FATP4	YFP-ACLY	0.05	0.04	0.05
	Rluc-FATP4	ACLY-YFP	0.04	0.04	0.04
	FATP4-Rluc	YFP-ACLY	0.06	0.06	0.06
	FATP4-Rluc	ACLY-YFP	0.07	0.09	0.08
	Rluc-FATP4	YFP-FATP4	0.14	0.09	0.14
ΕΔΤΡΛ_ΕΔΤΡ Λ	Rluc-FATP4	FATP4-YFP	0.03	0.02	0.03
17A114-FA1f4	FATP4-Rluc	YFP-FATP4	0.19	0.10	0.19
	FATP4-Rluc	FATP4-YFP	0.05	0.04	0.05
ALDP-ACC	Rluc-ALDP	YFP-ACC	0.01	0.02	0.02

	Rluc-ALDP	ACC-YFP	0.00	0.02	0.01
	ALDP-Rluc	YFP-ACC	0.01	0.03	0.02
	ALDP-Rluc	ACC-YFP	0.01	0.02	0.01
	Rluc-ACC	YFP-ALDP	0.01	0.03	0.02
	Rluc-ACC	ALDP-YFP	0.00	0.01	0.01
	ACC-Rluc	YFP-ALDP	0.01	0.02	0.02
	ACC-Rluc	ALDP-YFP	0.00	0.02	0.01
	Rluc-PMP70	YFP-ACC	0.06	0.03	0.05
	Rluc-PMP70	ACC-YFP	0.03	0.03	0.03
	PMP70-Rluc	YFP-ACC	low signal	low signal	
	PMP70-Rluc	ACC-YFP	low signal	low signal	
PMP70-ACC	Rluc-ACC	YFP-PMP70	0.01	0.02	0.01
	Rluc-ACC	PMP70-YFP	0.01	0.02	0.01
	ACC-Rluc	YFP-PMP70	low signal	low signal	
	ACC-Rluc	PMP70-YFP	low signal	0.02	0.02
	Rluc-ACLY	YFP-ACC	0.01	0.03	0.02
	Rluc-ACLY	ACC-YFP	0.02	0.03	0.02
	ACLY-Rluc	YFP-ACC	0.01	0.03	0.02
	ACLY-Rluc	ACC-YFP	0.02	0.03	0.02
ACLY-ACC	Rluc-ACC	YFP-ACLY	0.01	0.03	0.02
	Rluc-ACC	ACLY-YFP	0.01	0.03	0.02
	ACC-Rluc	YFP-ACLY	low signal	0.19	0.17
	ACC-Rluc	ACLY-YFP	0.18	0.19	0.19
	Rluc-FASN	YFP-ACC	0.01	0.03	0.02
	Rluc-FASN	ACC-YFP	0.02	0.03	0.02
	FASN-Rluc	YFP-ACC	0.03	0.01	0.02
EASN ACC	FASN-Rluc	ACC-YFP	0.02	0.03	0.02
FASN-ACC	Rluc-ACC	YFP-FASN	0.03	0.03	0.03
	Rluc-ACC	FASN-YFP	0.00	0.02	0.01
	ACC-Rluc	YFP-FASN	low signal	low signal	
	ACC-Rluc	FASN-YFP	low signal	0.06	0.06
	Rluc-FATP4	YFP-ACC	0.02	0.03	0.03
	Rluc-FATP4	ACC-YFP	0.01	0.03	0.02
FAIF4-AUU	FATP4-Rluc	YFP-ACC	0.04	0.05	0.04
	FATP4-Rluc	ACC-YFP	0.02	0.02	0.02

	Rluc-ACC	YFP-FATP4	0.04	0.07	0.05
	Rluc-ACC	FATP4-YFP	0.01	0.02	0.02
	ACC-Rluc	YFP-FATP4	low signal	low signal	
	ACC-Rluc	FATP4-YFP	low signal	0.02	0.02
	Rluc-ACC	YFP-ACC	0.10	0.1162	0.10
	Rluc-ACC	ACC-YFP	0.02	0.0321	0.02
ACC-ACC	ACC-Rluc	YFP-ACC	low signal	low signal	
	ACC-Rluc	ACC-YFP	low signal	low signal	
	Rluc-ALDP	YFP-IL10RB	0.01	-0.02	-0.01
	Rluc-ALDP	IL10RB-YFP	-0.01	-0.02	-0.01
	ALDP-Rluc	YFP-IL10RB	0.01	0.00	0.00
	ALDP-Rluc	IL10RB-YFP	-0.01	-0.01	-0.01
ALDP-IL10KB	Rluc-IL10RB	YFP- ALDP	0.02	0.00	0.01
	Rluc-IL10RB	ALDP-YFP	-0.01	-0.01	-0.01
	IL10RB-Rluc	YFP-ALDP	0.02	low signal	0.02
	IL10RB-Rluc	ALDP-YFP	-0.01	low signal	-0.01
	Rluc-ALDP	YFP-ACADS	0.01	-0.01	0.01
	Rluc-ALDP	ACADS-YFP	low signal	0.01	0.01
	ALDP-Rluc	YFP-ACADS	0.05	low signal	0.05
	ALDP-Rluc	ACADS-YFP	0.01	0.03	0.02
ALDP-ACADS	Rluc-ACADS	YFP- ALDP	-0.01	-0.03	-0.02
	Rluc-ACADS	ALDP-YFP	-0.01	-0.03	-0.02
	ACADS-Rluc	YFP-ALDP	-0.02	0.01	0.00
	ACADS-Rluc	ALDP-YFP	low signal	-0.02	-0.02

BRET ratios tested in 8 possible tag combinations are listed for 2 independent experiments. BRET ratios above the threshold for a positive PPI are highlighted in grey.

Supplementary Table 3.	. BRET saturation experiments.
------------------------	--------------------------------

	ALDP -	PMP70 -	PMP70 -	PMP70 -	ALDP -	PMP70 -	ALDP -	ACLY -
	ALDP	PMP70	ALDP	FASN	FASN	ACLY	ACLY	FASN
BRET _{max}	0.16 ± 0.02	0.33 ± 0.01	0.25 ± 0.04	0.35 ± 0.02	0.27 ± 0.03	0.50 ± 0.01	0.49 ± 0.01	0.47 ± 0.01
P-value		< 0.001	< 0.001		< 0.01		ns	-
BRET ₅₀	0.85 ± 0.19	1.22 ± 0.16	2.05 ± 0.60	1.81 ± 0.33	2.02 ± 0.46	0.59 ± 0.02	4.25 ± 0.2	3.83 ± 0.29
<i>P</i> -value		ns	< 0.01		ns		< 0.001	-

BRET saturation experiments were performed to determine relative binding affinities (BRET₅₀, acceptor to donor ratio at half-maximum BRET ratio) and maximal BRET ratios as a measure of the distance of BRET tags (BRET_{max}). Calculation of the maximal BRET ratios at saturation level (BRET_{max}) and the relative affinity index (BRET₅₀) derived from BRET saturation experiments, given as mean \pm corresponding standard error of the mean (SEM). Significance for the difference between the homomeric ALDP transporter, the homomeric PMP70 or heteromeric PMP70-ALDP transporter, as well as for the interaction between PMP70 or ALDP with FASN and for PMP70 or ALDP with ACLY, respectively, were calculated by one-way ANOVA and a Dunnett's post test (ns, not significant). BRET₅₀ and BRET_{max} values are displayed as means \pm SD of n = 3 independent experiments.

	BIOGRID	HPRD	Manually recurated	PMID
ΕΔΤΡ 4	GT197		GT197	20562859
	S1R		S1R	17353931
	ALDP	ALDP	ALDP	10551832
		PMP70	PMP70	10551832
		ALDR	ALDR	10551832
	PEX19	PEX19	PEX19	10777694
	USP50			
	USP32			
	CLN3		CLN3	20562859
PMP70	BRF-2		BRF-2	17353931
	mPR		mPR	17353931
	PRL-R		PRL-R	17353931
	PELO		PELO	17353931
	MLF2		MLF2	17353931
	MEST		MEST	17353931
		COL6A2		
	RIP5		RIP5	17353931
		ALDP	ALDP	10551832
	PMP70	PMP70	PMP70	10551832
ALDF	PEX19	PEX19	PEX19	10777694
	ALDR	ALDR	ALDR	10551832
		ACLY	ACLY	9116495
ACLY		PKA C-a		
ACLI	AMPKb		AMPKb	17353931
	GSK-3b	GSK-3b	GSK-3b	17353931

Supplementary Table 4. PPI network of ALDP, PMP70, ACLY, FASN and FATP4 and first order interactions.

	NDKB		NDKB	17353931
	Hrs		Hrs	19019082
	IkBKE		IkBKE	17353931
	bHLHe33		bHLHe33	17353931
	FASN	FASN	FASN	11248039
FASN	EWS	EWSR1	EWS	16189514
		DRG-1	DRG-1	17220478

Interaction partners of ALDP, PMP70, ACLY, FASN and FATP4 identified by database analysis (HPRD, BioGRID) with subsequent manual recuration are listed and corresponding PubMed identification numbers (PMID) are given.

Name	Sequence (5'- 3')	Restriction enzyme
C-term. ALDP for.2	tttgaattcaatactcagagtcagatgcagaggcc	EcoRI
ALDPStop-NotI rev	taagcggccgctcaggtggaggcaccctggaggcc	NotI
ALDP up	ttactcgagcaatgccggtgctctccaggccccgg	XhoI
ALDP down	tttaagettteaggtggaggeaceetggaggee	HindIII
C-term. PMP70 for	ttaggatccgatttgtctcatcctcgacatctc	Bam HI
PMP70Not I rev	ttagcggccgcctaagagccaaactcaactgtatc	NotI
PMP70 up	taatccggaatggcggccttcagcaagtacttg	BspEI
PMP70 down	ttaggatccctaagagccaaactcaactgtatc	Bam HI
ACLY for	ttagaattcaaatgtcggccaaggcaatttc	EcoRI
ACLY rev	taagcggccgcttacatgctcatgtgttcc	NotI
FATP4myc for	ttagaattcatgctgcttggagcctctctg	EcoRI
FATP4myc rev	taaaagcttttcagcttctcctcgcctgcc	HindIII
FATP4 attB1 for	ggggacaagtttgtacaaaaaagcaggctttatgctgcttggagcctctctg	
FATP4 attB1 rev	ggggaccactttgtacaagaaagctgggttcagcttctcctcgcctgcc	
ACLY attB1 for	ggggacaagtttgtacaaaaaagcaggctacaccatgtcggccaaggcaatttcag	
ACLY attB2 rev	ggggaccactttgtacaagaaagctgggtacatgctcatgtgttccggaa	
ALDP attB1 for	gggacaagtttgtacaaaaaagcaggcttgacatgccggtgctctccaggcc	
ALDP attB2 rev	gggaccactttgtacaagaaagctgggtgaattccggtggaggcaccctggagg	

Supplementary Table 5. Oligonucleotide sequences used for construction of plasmids.

Sequences are shown from 5' to 3' end. Restriction sites in the sequence of the cloning oligonucleotides are shown in italic and restriction enzymes are listed.