Supporting Information

Vieira-Silva et al. 10.1073/pnas.1110972108

SI Materials and Methods

Ortholog Alignments. The 61 families of orthologs in the 74 proteobacteria were aligned with MUSCLE (1). Poorly aligned regions were removed using Gblocks with nonstringent parameters, allowing a maximum of 10 nonconserved contiguous positions and a minimum block size of 8 and allowing for gaps in half the sequences (2).

Deep-Phylogenetic Analyses. We used the HOGENOM4 database (3) to identify homolog families present in at least six organisms of at least 10 of the following 15 clades: α -proteobacteria (α P, n = 47), β -proteobacteria (β P, n = 32), δ -proteobacteria (δ P, n = 12), ε -proteobacteria (ε P, n = 7), γ -proteobacteria (β P, n = 63), actinobacteria (Ac, n = 28), bacillales/lactobacillales (Ba, n = 34), bacteroidetes/chlorobi (Bt, n = 9), chlamydiae/verruco-microbia (Ch, n = 7), clostridia (Cl, n = 7), cyanobacteria (Cy, n = 13), spirochaetes (Sp, n = 7), tenericutes (Te, n = 14), crenarchaeota (n = 11), euryarchaeota (n = 25).

All deep-phylogenetic trees were reconstructed with RAXML (model WAG+8 Γ +I, 100 rapid bootstraps) (4). To assess the topological differences between deep-phylogenies reconstructed using lowly (LEP) or highly expressed proteins (HEP), we counted the number of nodes from the clade's most recent common ancestor to the root using ade4 in R (5, 6). We inferred the minimal generation time of each clade's ancestor using generalized least squares (GLS) with the Brownian motion model (R package *ape*) (7).

Expressivity Indices. We used several expressivity indices based on experimental data (mRNA and protein concentrations), or predictions (codon usage bias) for Escherichia coli. The Codon Adaptation Index (CAI) measures the fit between the codon usage of a gene and that of a reference set of highly expressed genes (8). For the latter we used the genes encoding the ribosomal proteins. The mRNA index is a weighted average of three experimental transcriptomics datasets for E. coli, normalized to the same average expression among common genes. The corrective factors were: 1.10 (9), 1.05 (10), 2.45 (11). Similarly, the Protein index is a weighted average of two experimental proteomics datasets with corrective factors 0.702 (12) and 1.989 (11, 13). Even though not all E. coli genes were analyzed in all proteomics or transcriptomics analysis, all of the 61 orthologs common to the 74 proteobacteria have a corresponding mRNA index, and 60 have a corresponding Protein index. Because the mRNA index is more complete, based on more experiments and independent of sequence composition (contrary to CAI) we used it throughout the work.

Evolutionary Rate Difference. For each pair of protein trees (p_1, p_2) , for each taxon (sp), we compute the normalized difference of the terminal branches lengths (r_i) as $(r_{p1} - r_{p2})/(r_{p1}+r_{p2})$. We then computed the correlation between evolutionary rate variation and minimum generation times. For each pair of

- Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577.
- Penel S, et al. (2009) Databases of homologous gene families for comparative genomics. BMC Bioinformatics 10(Suppl 6):S3.
- Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22:2688–2690.

protein trees, we then computed the nonparametric Spearman correlation $[\rho_{(p1,p2)}]$ between the evolutionary rate variation and the minimum generation time attributed to the taxon. The distribution of the coefficients of correlation of the set of pairs of proteins with very different expression levels was then used to test our hypothesis.

We also controlled this analysis for multiple comparisons and phylogenetic nonindependence of the data. To use exclusively independent pairwise comparisons, we sampled 1,000 times, without replacement, the set of 61 ortholog families for the pairs of proteins with significantly different expression levels. We thus obtained 1,000 sets of pairs of protein trees with a fivefold difference in expressivity and where one protein tree is represented at most once in each set. Then we tested for phylogenetic independent contrasts in each set of pairs of proteins. For each pair of protein trees we computed the phylogenetic independent contrasts (14) for the minimum generation times and for the evolutionary rate variation between proteins with ape (7), using the reference tree for the 74 proteobacteria. Finally, we calculated the median of the values of Spearman correlations for each set. The significance of the negative relation between evolutionary rate heterogeneity and minimum generation time is estimated as the number of sets with negative medians (e.g., if all medians are negative as proposed by H_1 , then the control (PD-P) value < 0.001). In short, PD-P value refers to the P value of the test on the median of the distribution of Spearman correlations using phylogenetically independent contrasts and controlling for multiple comparisons.

Estimation of Effective Population Size. We estimated the effective population size scaled by mutation rate (Ne.u) of 38 species with published minimum generation time by using published data on their genetic diversity (15).

Given the average number of substitutions between silent sites in two randomly sampled allelic sequences (H), Ne.u was computed: Ne.u = 3H/(3-4H) (16).

Assuming similar mutation and recombination rates, the composite parameter Ne.u will correlate to the degree of influence of genetic drift in evolutionary process in different lineages. It is thought that mutation rate is largely determined by genome size (17), and we have previously shown that there is no significant association between minimal generation times and genome size (18).

Skewness. The skewness of the distribution (γ_1) is estimated as follows. A positive coefficient $(\gamma_1 > 0)$ indicates a distribution skewed to the left, with the bulk of values falling to the left of the mean. A Gaussian distribution has a null coefficient $(\gamma_1 = 0)$.

$$\gamma_1 = \frac{n}{(n-1)(n-2)} \sum_{i=1}^n \left(\frac{x_i - \bar{x}}{sd(x)}\right)^3; \text{ with } sd(x) = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2}$$

- Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package I: One-table methods. R news 4(1):5–10.
- R Development Core Team (2009) R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria) http://www.Rproject.org. Accessed September, 2009.
- 7. Paradis E, Claude J, Strimmer K (2004) APE: Analyses of Phylogenetics and Evolution in R language. *Bioinformatics* 20:289–290.
- Sharp PM, Li WH (1987) The codon Adaptation Index—A measure of directional synonymous codon usage bias, and its potential applications. *Nucleic Acids Res* 15:1281–1295.

Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* 32:1792–1797.

- Allen TE, et al. (2003) Genome-scale analysis of the uses of the *Escherichia coli* genome: Model-driven analysis of heterogeneous data sets. *J Bacteriol* 185: 6392–6399.
- Corbin RW, et al. (2003) Toward a protein profile of *Escherichia coli*: Comparison to its transcription profile. *Proc Natl Acad Sci USA* 100:9232–9237.
- Masuda T, Saito N, Tomita M, Ishihama Y (2009) Unbiased quantitation of *Escherichia* coli membrane proteome using phase transfer surfactants. *Mol Cell Proteomics* 8: 2770–2777.
- Lopez-Campistrous A, et al. (2005) Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth. Mol Cell Proteomics 4: 1205–1209.
- Ishihama Y, et al. (2008) Protein abundance profiling of the *Escherichia coli* cytosol. BMC Genomics 9:102.
- 14. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1.
- 15. Lynch M (2006) The origins of eukaryotic gene structure. Mol Biol Evol 23:450-468.
- 16. Lynch M, Conery JS (2003) The origins of genome complexity. *Science* 302:1401–1404.
- Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 88:7160–7164.
- Vieira-Silva S, Touchon M, Rocha EP (2010) No evidence for elemental-based streamlining of prokaryotic genomes. *Trends Ecol Evol* 25:319–320, author reply 320–321.

Fig. S1. Minimum generation times in bacteria and archaea. (*A*) Phylogenetic inertia associated to minimum generation time in 154 bacteria and archaea. We computed the pairwise differences in the log-transformed minimum generation times (average: horizontal dashed line). Pairwise phylogenetic distances were computed from the reference phylogeny. A flexible spline was fitted to pairwise comparisons between proteobacteria (red) and between all other taxa except proteobacteria (blue). The latter exhibit higher phylogenetic inertia (i.e., closely related taxa tend to have more similar growth rates). The boxplot on the *Lower Left* represents the distribution of terminal branch lengths in the reference tree of our dataset of 74 proteobacteria, where whiskers span from the minimum to the maximum. These are all below the threshold of significant phylogenetic inertia, represented by the dashed vertical line (x = 0.95 substitutions per site). In branches larger than this length in proteobacteria, the probability of an extant fast (slow) grower to remain fast (slow)-grower is the same as of having changed. (*B*) Distribution of characterized minimum generation times in bacterial clades. The surface of the pie-charts is proportional to the number of representatives from each clade in the reference tree, with the gray portion corresponding to those with characterized minimum generation times in the edges of the box are the quartiles, and the whiskers extend from the ends of the box to the outermost datapoint that falls within the distances computed: quartiles $\pm 1.5 \times$ interquartile range. The average and SD of the distribution are represented by a black dot and line. The dashed line is the overall average of characterized minimum generation times.

1. Vieira-Silva S, Rocha EPC (2010) The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet 6:e1000808.

Fig. S2. Reference tree of the 74 proteobacteria with published minimum generation times. Branch supports lower than 99% are reported on the figure, as estimated by rapid bootstrap (4). Branch lengths represent protein evolutionary rates (scale: 0.2 substitutions per site). Red and blue branches correspond to the fast and slow (g > 2.5 h) growers. Classes within proteobacteria are identified by the corresponding greek letter.

DNAS

Fig. S3. Protein evolutionary rate variation according to expressivity in *E. coli*. Evolutionary rates for orthologs of *E. coli* and *Salmonella enterica* were retrieved from a previous publication (1). The black datapoints correspond to the subset of *E. coli* orthologs included in the 61 ortholog families shared by the 74 proteobacteria. A smoothing spline was fitted for the whole dataset ($\rho = -0.47$; $P < 10^{-4}$; n = 2,060) and for the 61 ortholog families ($\rho = -0.68$; $P < 10^{-4}$; n = 61). The figure was truncated for values of substitution rates higher than 10%.

1. Rocha EPC, Danchin A (2004) An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol 21:108-116.

Fig. 54. Analysis of evolutionary rate differences on diverse datasets. (*A*) Distribution of Spearman coefficients of the association between the organism's generation time (g) and evolutionary rate variation between HEP and LEP (Δ) using different expressivity indexes (*SI Materials and Methods*). For any pair of protein where the first has a lower expressivity than the second, we calculated the Spearman correlation between g and Δ . We expect the distribution to be centered on zero under H₀ (no correlation between growth and evolutionary rate variations) or skewed toward negative values under H₁ (negative correlation between growth and evolutionary rate variations) or skewed toward negative values under H₁ (negative correlation between growth and evolutionary rate variations) or skewed toward negative values under H₁ (negative correlation between growth and evolutionary rate variations) or skewed toward negative values under H₁ (negative correlation between growth and evolutionary rate variations) here and HEP. The median and quartiles of the distributions are represented in boxplots. The average and 95% confidence interval are represented by a gray diamond. The red bracket identifies the most-dense 50% of the observations. All averages are significantly lower than zero ($P < 10^{-4}$) and the positive skewness coefficients (γ_1) indicate that the bulk of values lie to the left of the mean. (*B*) Distribution of Spearman coefficients of all pairwise comparisons between protein families with a fivefold difference in expressivity (mRNA index): (a) Median over the entire distribution (n = 617); (b and c) Median of the pairs that show individually statistically significant correlations (respectively at P < 0.05 and P < 0.01). (C) Ribosomal proteins evolve slower than the replisome proteins and the 165 rDNA with decreasing generation times of 74 proteobacteria.

Fig. S5. Evolutionary rate variation in deep-phylogenies according to the minimum generation time. We compared the terminal branch lengths in deep phylogenies reconstructed with 31 HEP (1), 158 homolog families (158P), and 165 rRNA sequences for the set of species with congruent topology in all trees (72 bacteria and an outgroup of 10 archaea).

1. Ciccarelli FD, et al. (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287.

Fig. S6. Effective population size scaled by mutation rate (Ne.u) according to the minimum generation time. We estimated Ne.u for 38 species with published minimum generation time using published genetic diversity data (15). No significant correlation was found between the two variables ($\rho = -0.042$, *P* value = 0.80). From the original dataset in ref. 15, we excluded *Buchnera* (already controlled for when excluding endomutualists) and *Mycobacterium tuberculosis* (marked as an outlier in ref. 15). Inclusion of these two points does not change the conclusions ($\rho = -0.18$, *P* value = 0.27).

Table S1. Negative correlation between the expressivity of
the 61 proteins in <i>E. coli</i> and their substitution rates between
Escherichia coli MG1655 and Salmonella enterica LT2 (E.coli/
S.enterica dN) or the average subtitution rate of the proteins in
the 74 proteobacteria tree (average dN)

		E. coli/S. ent	e <i>rica</i> dN	Average dN		
Expressivity	n	Spearman ρ	P value	Spearman ρ	P value	
mRNA index	61 61	$\rho = -0.68$	< 10 ⁻⁴	$\rho = -0.32$	0.01	
Protein index	60*	ρ = -0.59 ρ = -0.52	< 10 ⁻⁴	ρ = -0.43 ρ = -0.41	0.0003	

See *SI Materials and Methods* for a definition of the expressivity indices. *Protein concentration unknown for one protein.

Concatenate	Protein name/ID	Function	
Proteobacterial orthologs			
Ribosome (2,446 sites)	rplA	50S Ribosomal subunit protein L1	
	rplB	50S Ribosomal subunit protein L2	
	rplC	50S Ribosomal subunit protein L3	
	rplD	50S Ribosomal subunit protein L4	
	rplF	50S Ribosomal subunit protein L6	
	rplJ	50S Ribosomal subunit protein L10	
	rplK	50S Ribosomal subunit protein L11	
	rplL	50S Ribosomal subunit protein L7/L12	
	rplM	50S Ribosomal subunit protein L13	
	rplO	50S Ribosomal subunit protein L15	
	rplP	50S Ribosomal subunit protein L16	
	rplR	50S Ribosomal subunit protein L18	
	rpsA	30S Ribosomal subunit protein S1	
	rpsC	30S Ribosomal subunit protein S3	
	rpsD	30S Ribosomal subunit protein S4	
	rpsG	30S Ribosomal subunit protein S7	
	rpsM	30S Ribosomal subunit protein S13	
Replisome (2,199 sites)	dnaB	Replicative DNA helicase	
	dnaE	DNA polymerase III α subunit	
	dnaN	DNA polymerase III, β subunit	
	gyrA	DNA gyrase type II topoisomerase subunit A	
	gyrB	DNA gyrase type II topoisomerase subunit B	
IOGENOM4 homolog famil	lies		
HEP (8,131 sites)	HBG000348	50S Ribosomal protein L19	
	HBG001285	DNA directed RNA polymerase β chain	
	HBG001445	DNA directed RNA polymerase α chain	
	HBG003915	Phosphoglycerate kinase triosephosphate isomeras	
	HBG011746	Elongation factor TS	
	HBG023340	50S Ribosomal protein L11 2 L11 3	
	HBG046904	305 Ribosomal protein S12	
	HBG055795	50S Ribosomal protein L4	
	HBG072316	50S Ribosomal protein L18	
	HBG079273	50S Ribosomal protein L5	
	HBG083688	Trigger factor 2	
	HBG110521	50S Ribosomal protein L20	
	HBG114333	30S Ribosomal protein S16	
	HBG119370	30S Ribosomal protein S11	
	HBG142539	Translation initiation factor IF 3	
	HBG154396	50S Ribosomal protein L3	
	HBG155458	50S Ribosomal protein L2 RPLB	
	HBG174293	Nucleoside diphosphate kinase b	
	HBG180703	50S Ribosomal protein L27	
	HBG187258	16S rRNA processing protein rimM	
	HBG187568	50S Ribosomal protein L28 2	
	HBG192816	30S Ribosomal protein S8	
	HBG211133	50S Ribosomal protein L13	
	HBG232228	50S Ribosomal protein L22	
	HBG232265	30S Ribosomal protein S17 2	
	HBG236852	30S Ribosomal protein S10	
	HBG249765	50S Ribosomal protein L21	
	HBG297151	50S Ribosomal protein L6	
	HBG301585	Phenylalanyl trna synthetase β chain	
	HBG301748	nusA antitermination factor	
	HBG313666	30S Ribosomal protein S6	
	HBG313694	50S Ribosomal protein L7 L12	
	HBG323189	50S Ribosomal protein L24	
	HBG331018	50S Ribosomal protein L17	
	HBG338914	30S Ribosomal protein S18 2	
	HBG341023	50S Ribosomal protein L16	
	HBG345344	50S Ribosomal protein L9	
	HBG347903	Alanyl tRNA synthetase protein	

Table S2. Proteins IDs and function included in the ribosome and replisome concatenates and inthe concatenates of HEP and LEP of the HOGENOM4 reference set

PNAS PNAS

Table S2. Cont.

Concatenate	Protein name/ID	Function		
	HBG353111	30S Ribosomal protein S9		
	HBG369991	50S Ribosomal protein L10		
	HBG378671	30S Ribosomal protein S7 2		
	HBG380059	50S Ribosomal protein L15		
	HBG381711	305 Ribosomal protein \$13		
	HBG382195	30S Ribosomal protein S19		
	HBG384371	50S Ribosomal protein L14		
	HBG386975	30S Ribosomal protein S5		
	HBG396698	30S Ribosomal protein S3		
	HBG399262	tRNA guanine methyltransferase		
	HBG415562	305 Ribosomal protein S20		
	HBG433393	50S Ribosomal protein L32 3		
	HBG448673	Preprotein translocase secy		
	HBG468280	50S Ribosomal protein L35		
	HBG481547	30S Ribosomal protein S2		
	HBG507162	Hypothetical protein ybaB		
	HBG515224	50S Ribosomal protein L34		
	HBG529802	50S Ribosomal protein L1		
	HBG532383	50S Ribosomal protein L23		
LEP (4,469 sites)	HBG000055	Regulation factor membrane-associated		
	HBG000124	Predicted regulation factor		
	HBG001073	Pantetheine-phosphate adenylyltransferase		
	HBG001081	Predicted rRNA methylase		
	HBG001135	Hemolysin protein		
	HBG001183	Holliday junction ATP dependent DNA helicase ruvl		
	HBG001394	Glucose inhibited cell-division protein		
	HBG060350	Heat inducible transcription repressor		
	HBG230304	Hypothetical protein yqeL		
	HBG123577	Putative methyltransferase SAM dependent		
	HBG144394	Regulation factor cell partioning and DNA repair		
	HBG184931	Primosomal protein N' superfamily II helicase		
	HBG185190	Protein yggJ		
	HBG187703	Protein ygcC aminodeoxychorismate lyase		
	HBG194406	Holliday junction resolvase		
	HBG236550	Predicted o sialoglycoprotein endopeptidase		
	HBG302091	Hypothetical protein yjeE		
	HBG328898	ATP dependent DNA helicase recG		
	HBG377949	DNA mismatch repair protein mutS		
	HBG410043	Segregation and condensation protein A		
	HBG457716	DNA repair protein recN		
	HBG505437	Chromosome segregation protein smc		

Table S3. Clades branching closest to the archaeal outgroup in deep-phylogenetic reconstruction based on HEP and LEP markers

			Closest [†]	Among closest [‡]	Closest [†]	Among closest [‡]
Clade	Ancestral log(g)*	Average log(g)	HEP trees		LEP trees	
Cl: clostridia	-0.33	-0.41	0	7.4	13.8	42.6
Ba: bacillales	-0.08	-0.11	0	1.8	0.2	0.2
εP: ε-proteobacteria	0.31	0.29	4.2	5.8	0	0
Te: tenericutes	0.33	0.51	7.2	9	11.6	12.8
βP: β-proteobacteria	0.35	0.38	0	2.6	0	8.6
γ P: γ-proteobacteria	0.37	0.14	0.2	2.8	0	8.6
Ac: actinobacteria	0.49	0.84	0.2	9.6	29.6	30
αP: α-proteobacteria	0.68	0.68	0	3	3.4	14.8
Bt: bacteroidetes	0.8	0.43	0.6	4.8	0	0
δP: δ-proteobacteria	0.82	1.01	0	3.4	0	2.4
Sp: spirochaetes	0.87	0.88	24.2	29	0	0
Cy: cyanobacteria	1.17	1.13	16.8	22.8	0	0.4
Ch: chlamydiae	1.33	1.43	28.4	31.4	0	0

See Fig. S1B for the distribution of minimal generation times (g).

PNAS PNAS

*Clades ordered according to inferred ancestral minimum generation time using GLS with the Brownian motion model (R package ape). [†]Trees (%) where the clade's ancestor is the node closest to the archaeal outgroup. Boldface numbers: Trees (%) > 10.

⁺Trees (%) where the clade's ancestor is part of several ancestor nodes equidistant to the root. Boldface numbers: Trees (%) > 10.