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Computational Details and Accuracy Test Database. Perdew has for-
mulated the hierarchy of density functional theory (DFT) approx-
imations as a “Jacob’s ladder” rising from the “earth of Hartree”
to the “heaven of chemical accuracy” (1). We tested here the per-
formance of some representative functionals of each rung (2–23).
These functionals are the first rung: SVWN (2, 3); the second rung:
BLYP (4, 5), PW91 (6, 7), PBE (8); the third rung: M06-L (9),
TPSS (10); the forth rung: B3LYP (4, 5,11–13), X3LYP (14), PBE0
(15), M06-2X (16), M06 (16); and the fifth rung: XYG3 (17),
XYGJ-OS, MC3BB (18), B2PLYP (19), B2GP-LYP (20), and
ωB97X-2(LP) (21). The corresponding dispersion corrected meth-
ods: B3LYP-D (22), B3LYP-D3 (23), and B2PLYP-D (22) are
also tested.

Single point DFT calculations were performed with the
G3Large basis set (24) for heats of formation (HOFs), ionization
potentials (IPs), electron affinities (EAs), proton affinities (PAs),
bond dissociation enthalpies (BDEs), reaction barrier heights
(RBHs), and nonbonded interactions (NBIs). Only HOFs of the
G3/99 set (24–26) were used as the training set to optimize the
parameters in XYG3 and XYGJ-OS. All other data were used as
the testing sets. The results are summarized in Table S1.

For HOFs (at 298 K and 1 atm), the G3/99 set (24–26) was
used as reference. The geometries were optimized using B3LYP
with the 6-31G(2df,p) basis set. Analytical vibrational frequencies
were calculated at the same level and scaled by 0.9854 to estimate
zero-point energies and thermo corrections. The same strategy
is used in the G3X method (24). Spin-orbit corrections were in-
cluded as in the Gn method (24–26). HOFs were calculated via
atomization procedure.

For IPs, EAs, and PAs (at 0 K), the G2-1 set (24–26) was used
as reference. These properties were calculated as energy differ-
ences between the neutral species and the corresponding ionic
species. As in the Gn method (24–26), the geometries were
optimized using MP2(full) with the 6-31G(d) basis set. Analytical
vibrational frequencies were calculated at the level of HF/6-31G
(d) and scaled by 0.8929 to estimate zero-point energies.

For BDEs, the BDE92/07 set (27) was used as reference. BDEs
were calculated according to the enthalpy change of the following
reaction in the gas phase at 298 K and 1 atm:

X − Y ðgÞ ¼ X · ðgÞ þ Y · ðgÞ;
BDEðX − Y Þ ¼ ΔfH

Ø
298ðX ·Þ þ ΔfH

Ø
298ðY ·Þ − ΔfH

Ø
298ðX − Y Þ:

For RBHs, Truhlar’s nonhydrogen transfer barrier height
(NHTBH) set and hydrogen transfer barrier height (HTBH) set
were used as reference. The geometries are taken from Truhlar
database website (28, 29).

For NBIs, Truhlar’s noncovalent interaction energy (NCIE) set
was used as reference. The geometries are taken from Truhlar
database website (29).

We also included some wave function based methods: HF,
MP2, SCS-MP2 (30), SOS-MP2 (31) for comparison. Composite
methods such as G2 and G3 (24–26) were used as references.
Geometries and thermo corrections were all done using the stan-
dard procedure built in the Gn method. For RBHs and NBIs, the
Gn results are replaced with QCISD(T)/6-311+G(3df,2p) ones,
where the geometries are taken from Truhlar database website
(28, 29).

The performances of various methods are summarized as fol-
lows (see Table S1).

We tested various methods in describing the whole
Hþ CH4 → H2 þ CH3 reaction path using CCSD(T)/6-311+
+G(3df,2pd) data (32) as the reference. The results are depicted
in Fig. S1. XYGJ-OS results are nearly identical to the XYG3 and
CCSD(T) results before the barrier. But XYGJ-OS overestimates
the reaction endothermicity by 1.21 kcal∕mol. Note that RBH
are not included in the training set of XYG3 and XYGJ-OS.

We tested various methods in describing the intermolecular
potentials of the CH4-C6H6 complex calculated by various meth-
ods as shown in Fig. S2. The CCSD(T) results at the complete
basis set (CBS) limit are used as reference (33). An unpruned
(250,590) grid is used in calculations to avoid spurious oscillations
on potential energy curves for dispersion-bound complexes with
MC3BB and the M06 family of functionals (34). As shown in
Fig. S2, XYGJ-OS data are nearly on top of those of XYG3. Note
that nonbonded interaction is not included in the training set of
XYG3 and XYGJ-OS. However we do not include BSSE correc-
tions with XYG3 and XYGJ-OS in comparing to the G3 andM06
data bases.

The total CPU timings are compared for XYG3-RI, XYGJ-
OS, and local XYGJ-OS (see Fig. S3). We used n-alkanes as
examples. The calculations were performed with cc-pVDZ basis
sets with the same basis set as the auxiliary basis. The numbers of
basis functions are 250 for C10, 1,210 for C50, and up to 2,410 for
C100. For local XYGJ-OS, a cutoff criterion of 5 × 10−6 for local
screening and the ω value of 0.2 a.u. for the attenuated Coulomb
fitting metric (Eq. S17 below) were used (35). As compared
to XYGJ-OS, the local algorithm errors for total energies of
n-alkanes are less than 0.01 eV (0.25 kcal∕mol) up to C100.
For the atomization energies of G2 set, we obtained the same
statistical results (less than 0.001 eV of difference) for both
XYGJ-OS and its local version.

The ωB97X-2(LP) results are taken from ref. 21. The ωB97X-2
(LP) yields a very high accuracy comparable to XYGJ-OS for
HOF, IP, EA, PA, NHTBH, and HTBH, where the key difference
in terms of accuracy is that, in ωB97X-2(LP) all the latter proper-
ties were part of the training set used in the fitting process while
in XYGJ-OS only the HOF was used as a training set. XYGJ-OS
contains four fitting parameters while parameters in Becke88
exchange and LYP correlation functionals are fixed at their ori-
ginal values. The ωB97X-2 (LP) contains 16 fitting parameters.
Another difference is that, the parameters in the ωB97X-2 (LP)
were fitted assuming the large Pople basis 6-311++G(3df, 3pd).
There is also a computational difference between ωB97X-2 (N5)
and XYGJ-OS (N3 for the default local implementation and N4

for canonical).
From Table S1, it is clear that HOF calculations are very basis

set dependent, where the calculations with the basis sets used for
DHDF functional parameterization lead to the best results.
Changing basis sets from 6-311+G(3df,2p) to G3Large increases
XYG3 MAD for HOF by 1.63 kcal∕mol. Changing basis sets
from CQZV3P (quadruple basis sets plus three set of polarization
and core polarization functions) to G3Large increases B2PLYP
MAD by 4.85 kcal∕mol and B2PLYP-D MAD by 4.22 kcal∕mol.
Changing basis sets from 6-311++G(3df,3pd) to G3Large in-
creases ωB97X-2 (LP) MAD for HOF by 3.82 kcal∕mol. For
other properties, basis set dependence associated with DHDFs
is relatively mild.

Dispersion-correction methods could increase the errors for
RBH and hydrogen bond interactions, but they should signifi-
cantly improve the performance for systems (clusters) dominated
by weak (vdw) interactions. Thus for RBH (Truhlar datasets
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NHTBH38 and HTBH38 in Table S2), we find MAD ¼
4.47 kcal∕mol (B3LYP), 5.12 (B3LYP-D) and 4.98 (B3LYP-D3).
Grimme, et al. (57) found MAD ¼ 4.7 (B3LYP), 5.4 (B3LYP-D)
and 5.2 kcal∕mol (B3LYP-D3), which are slightly different due to
differences in the basis sets. For nonbonded interactions (Truhlar
dataset NCIE31 in Table S3), we find MAD ¼ 0.95 kcal∕mol
(B3LYP), 0.71 (B3LYP-D), and 0.70 (B3LYP-D3). In fact, B3LYP
is much worse for the π-π stacking complexes than these numbers
suggest, because we assess the error at the correct geometry.
B3LYP-D and -D3 give correct geometry and lead to decreased
error. On the other hand, for the hydrogen bond and charge-
transfer complexes, the agreement is worse for the dispersion
corrected methods.

All calculations reported in this article were performed using a
development version of Q-Chem (36).

XYG3 vs. XYGJ-OS. In this section of SI, we summarize some basic
physics associated with XYG3 and XYGJ-OS. The way of devia-
tion of XYG3 and XYGJ-OS presented here complements that
in the main text.

The Holy Grail in Kohn-Sham (KS) DFT is to find the exact,
yet unknown, exchange-correlation functional Exc½ρ� using density
ρ as the basic variable (37–39). The density functional approxi-
mation (DFA) often partitions Exc into exchange and correlation
parts

Exc½ρ� ≈ EDFA
x ½ρ� þ EDFA

c ½ρ�: [S1]

Various approximations to this divine functional have been devel-
oped and tested in recent decades, but the accuracy of the best
methods practical for important applications is often not
adequate.

The adiabatic connection approach provides a powerful tool
for developing and understanding Exc (40, 41). This approach
defines a family of partially interacting N-electron systems for
a fixed ρ,

Ĥλ ¼ T̂ þ V̂ ee;λ þ V̂ ext;λ ¼ T̂ þ λV̂ ee þ∑
N

i

υλðriÞ; [S2]

where both the two-electron operator V̂ ee ¼ ∑N
i<j 1∕rij and the

external potential depends upon the coupling strength λ. Here
λ ¼ 0 corresponds to the noninteracting KS system with Ĥs, while
λ ¼ 1 leads to the physical system. EXC is then given by (40, 41):

Exc½ρ� ¼
Z

1

0

Uxc;λ½ρ�dλ; [S3]

where Uxc;λ is the potential energy of exchange-correlation at in-
termediate coupling strength λ. Regretfully, the exact integrand
Uxc;λ is unknown. Eq. S2 may be reformulated as

Ĥλ ¼ Ĥs þ λĤ 0
λ; [S4]

where the perturbation term is given by

Ĥ 0
λ ¼ V̂ ee þ

1

λ∑
N

i¼1

�
υλðriÞ − υsðriÞ

�
: [S5]

From perturbation theory and relations based on uniform coor-
dinate scaling (42), we obtain

Uxc;λ ¼ EHF
x þ 2λEGL2

c þOðλ2Þ: [S6]

Here EGL2
c is the Görling-Levy theory of coupling-constant per-

turbation expansion to second order (43):

EGL2
c ¼ ∑

i
∑
a

jhφijυx − k̂xjφaij2
εi − εa

þ 1

4∑
ij
∑
ab

jhφiφjjφaφbi − hφiφjjφbφaij2
εi þ εj − εa − εb

; [S7]

where subscripts (i, j) denote occupied KS orbitals, and (a, b)
denote virtual orbitals. Here υx is the local exchange operator de-
fined by the exchange part of Eq. S8,

υxcðrÞ ¼
δExc½ρ�
δρ

; [S8]

while k̂x in Eq. S7 is the Fock-like nonlocal exchange operator,
leading to EHF

x :

EHF
x ¼ −

1

2∑
ij

ZZ
d3r0d3r

φ�
i ðrÞφjðrÞφ�

j ðr0Þφiðr0Þ
jr0 − rj : [S9]

The superscript “HF” emphasizes that it has the same form as in
Hartree-Fock (HF) theory. Eq. S9 is exact if the KS orbitals give
the true density. Inserting Eq. S6 into Eq. S3 leads to:

Exc½ρ� ≈ EHF
x ½fφi½ρ�g� þ EGL2

c ½fφi½ρ�g�: [S10]

If Uxc;λ depends linearly on λ, the higher order term Oðλ2Þ in
Eq. S6 is zero, such that the higher order term Oðλ3Þ in [S10]
vanishes; i.e., [S10] provides an exact expression in this condition.
The fφ½ρ�g indicates an orbital dependent functional. For prac-
tical uses, one needs an EDFA

xc ½ρ� that generates good KS orbitals
(17, 44, 45, 46).

To improve the linear approximation of Uxc;λ, we define a
doubly hybrid density functional (DHDF) that combines [S10]
and [S1]:

EDHDF
xc ½ρ� ¼ c1ELDA

x þ c2ΔEGGA
x þ c3EHF

x

þ c4ELDA
c þ c5ΔEGGA

c þ c6EGL2
c : [S11]

Here fELDA
x ;ELDA

c g are the exchange and correlation compo-
nents within the local density approximation (LDA), and
fΔEGGA

x ;ΔEGGA
c g are the corresponding correction terms to

LDA within the generalized gradient approximation (GGA). The
meta-GGA functionals that include kinetic energy density or the
Laplacian of density can also be used in replace of GGAs. [S10] is
more appropriate near λ ¼ 0, while [S1] is more appropriate near
λ ¼ 1. Therefore Eq. S11 combines both to embrace local and
nonlocal parts of both exchange and correlation contributions,
which we expect to provide a good form for general applications.
MC3BB (18), B2PLYP (19) and ωB97X-2 (21), which are derived
and constructed differently, are examples of other doubly hybrid
functionals (18–21, 47–49). Neglecting the nonlocal correlation
effects, Eq. S11 leads to such conventional hybrid functionals
as Becke’s half-and-half (50) and B3LYP (12).

Based on Eq. S11, we have developed a DHDF, namely XYG3
(17), which is remarkably accurate for a wide range of systems
and important chemical properties (17, 44, 45, 46). Nevertheless,
including the PT2 term in DHDFs (17–21) leads to a formal scal-
ing as N5, as opposed to a formal scaling of N4 as in B3LYP. This
unfavorable scaling raises an issue for the practicality to apply
XYG3 to large systems.

Here we propose a new opposite-spin (OS) ansatz for DHDF,
namely XYGJ-OS, that yields a balanced description of nonlocal
correlation effects while considerably reducing computational
time. Our OS ansatz is motivated by the observation that the most
important electron correlation effects involves correlation of the
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OS electrons in the same orbital. The OS ansatz leads to N4

scaling [using auxiliary basis expansions and Laplace quadrature
approximations (31, 35)]. In XYGJ-OS, the same-spin (SS) cor-
relation effects are included within the standard DFA. A local
version of XYGJ-OS is further developed that introduces the
local approximation for the OS electron correlation. Local
XYGJ-OS scales as N3 by recognizing the “nearsightedness of
electron correlation” as emphasized by Kohn (51), while retain-
ing the accuracy of the original XYGJ-OS (described below).

Thus our proposed functional form (XYGJ-OS) is

EXYGJ-OS
xc ½ρ� ¼ exEHF

x þ ð1 − exÞES
x þ ðeVWNEVWN

c þ eLYPELYP
c Þ

þ ePT2EPT2
c;os : [S12]

In Eq. S12 we normalize the HF exchange and Slater exchange,
while eliminating the ΔEGGA

x contribution. The superscript
“PT2” indicates that only the MP2-like perturbation part in
Eq. S7 is evaluated as also done in the B2PLYP (19) and other
DHDFs (17, 20, 21). The correlation part consists of EVWN

c , ELYP
c ,

and EPT2
c;os , where the first term includes both the SS and OS effects

while the second and third terms include only OS components.
Our concept is that the combination of VWN, LYP, and PT2-OS
yields a balanced description of both local and nonlocal spin de-
pendent correlation terms. To determine the optimal four para-
meters in Eq. S12, we use the experimental HOF data for the G3/
99 set of 223 molecules (24–26) as the training set, leading
to fex;eVWN;eLYP;ePT2g ¼ f0.7731;0.2309;0.2754;0.4364g.

We would like to emphasize that we use fully optimized B3LYP
orbitals to generate the density and to calculate each term in
Eq. S12 (17, 44, 45, 46). Other DHDFs have either used HF or-
bitals for PT2 evaluation (18), or the density and orbitals from a
truncated functional with incomplete correlation (19–21, 47–49).

Summary of local OS PT2 approximations. In this section of SI, we
summarize the approximations associated with the local OS PT2
ansatz, and a brief introduction of how the locality is exploited in
the present algorithm. That is, we here summarize ref. 31 for
completeness.

In order to be able to use locality of electron correlation, one
has to transform the canonical-orbital based PT2 expression to the
local-orbital based expression. To this end, we eliminate the energy
denominator via the Laplace transform 1∕x ¼ ∫ ∞

0 dte
−xt (56):

EOS-PT2 ¼ −∑
α

ia
∑
β

jb

ðiajjbÞ2
εa þ εb − εi − εj

¼ −
Z

∞

0

dt∑
α

ia
∑
β

jb

e−ðεaþεb−εi−εjÞtðiajjbÞ2; [S13]

where εi, εj, εa, εb are the orbital energies of the occupied levels i, j
and the virtual levels a, b. The two-electronMO repulsion integrals
are given by:

hijjabi ¼ ðiajjbÞ ¼
Z

dr1

Z
dr2ϕiðr1Þϕaðr1Þ

1

jr1 − r2j
ϕjðr2Þϕbðr2Þ:

[S14]

Numerical integration over t is performed by introducing a discrete
quadrature (over n points, which is typically 6–8):

EOS-PT2 ¼ −∑
n

q

wq ∑
α

ia
∑
β

jb

e−ðεaþεb−εi−εjÞtqðiajjbÞ2

¼ −∑
n

q

wq ∑
α

ia
∑
β

jb

ð~i ~a j~j ~bÞ2q: [S15]

t-dependent Laplace transformed orbitals ~ϕi and ~ϕa are given in
terms of canonical orbitals that are exponentially damped:

~ϕi ¼ ϕieεi tq∕2 [S16]

~ϕa ¼ ϕae−εatq∕2: [S17]

In Eqs. S16, S17 and below, we use a notation for simplicity that
~ϕi implies the transformed orbital at the quadrature point q. We
next introduce an auxiliary basis fΦQg expansion for the product
density (Eq. S18) to reduce the number of expensive four-center
two-electron integrals into much more affordable two- and three-
center integrals.

ρ ¼ jφiφ~ai ≈ ρfitted ¼ ∑
M

Q

C~i ~a
Q jΦQi: [S18]

This approximation is also known as Resolution of Identity (RI) or
density fitting technique (53, 54). The auxiliary basis expansion
coefficients, C , are determined by minimizing the self interaction
of the difference between the fitted distribution and the actual dis-
tribution, ρdiff ¼ ρfitted − ρactual, defined as,

ðρdiffjρdiffÞ ¼
Z

dr1

Z
dr2ρdiffðr1Þgðr1;r2Þρdiffðr2Þ; [S19]

where gðr1;r2Þ ¼ 1∕jr1 − r2j. Differentiation of Eq. S19 with re-
spect to C and setting it to zero leads to the following solution
for C, which involves only the two-index two-electron and three-
index two-electron integrals:

C~i ~a
Q ¼ ∑

P

ð~i ~a jPÞðPjQÞ−1: [S20]

Inserting Eqs. S18 and S20 into Eq. S14 results in the following
integral approximation:

ð~i ~a j~j ~bÞ ≈∑
Q

B~i ~a
Q B

~j ~b
Q ; [S21]

where B is the matrix defined as:

B~i ~a
Q ¼ ∑

P

ð~i ~a jPÞðPjQÞ−1∕2: [S22]

Substituting Eq. S21 into Eq. S15 finally leads to the following
working expression for the OS PT2 correlation energy:

EOS-PT2 ¼ −∑
n

q

wq∑
PQ

XPQX̄PQ: [S23]

XPQ and X̄PQ are defined as:

XPQ ¼ ∑
α

ia

B~i ~a
P B

~i ~a
Q [S24]

X̄PQ ¼ ∑
β

jb

B
~j ~b
P B

~j ~b
Q : [S25]
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Formation of X from the Bmatrices, Eqs. S24 and S25, is the most
expensive fourth-order step in OS-PT2.

While Eq. S15 is specific to the canonical-orbital basis, expres-
sions in a generalized orthogonal basis can be given as follows:

EOS-PT2 ¼ −∑
n

q

wq ∑
α

IA
∑
β

JB

ð~I ~A j~J ~BÞ2q [S26]

~ϕI ¼ ∑
K

ϕK ðϕK jef̂ tq∕2jϕIÞ ¼ ∑
K

ϕKWKI [S27]

~ϕA ¼ ∑
C

ϕCðϕCje−f̂ tq∕2jϕAÞ ¼ ∑
C

ϕCWCA; [S28]

where indices I, J, K . . . . . andA, B,C . . . . . refer to localized func-
tions that span occupied and virtual spaces. In Eqs. S27 and S28,
we again assume that ~ϕI implies the transformed orbital at the
quadrature point q. We chose to use orthogonal Boys functions
for the localized occupied orbitals, and the generalized ortho-
gonal projected atomic orbitals (AO)’s for the localized virtual
orbitals, defined as jAi ¼ Q̂ðs−1∕2Þjμi, where Q̂ is the virtual pro-
jection operator, and μ;ν;⋯ are the AO indices. We could have
used Boys virtual orbitals instead of the projected AOs since the
projected AOs partly destroy the locality of AOs by applying
s−1∕2. But Boys localization using the Jacobi sweeps becomes
computationally very demanding due to poor convergence for
large systems. Therefore we used the projected AOs for the
localization of virtual orbitals.

We next introduce the auxiliary basis expansion, as before,
for the product distribution ~ϕI

~ϕA, and obtain the same solution
for C, except that here we choose to employ the short-range two-
electron operator gðr1;r2Þ ¼ erf cðωjr1 − r2jÞ∕jr1 − r2j, which is
denoted with a subscript ω, to remove the long-range artifact
of Coulomb metric (55).

C~I ~A
Q ¼ ∑

P

ð~I ~A jPÞωðPjQÞ−1ω : [S29]

Finally, we rewrite Eq. S14 as the following working expression
for the local OS-PT2 algorithm:

EOS-PT2 ¼ −∑
n

q

wq ∑
PQRS

YPRðPjQÞȲQSðRjSÞ [S30]

YPR ¼ ∑
α

IA

C~I ~A
P C~I ~A

R [S31]

ȲQS ¼ ∑
β

JB

C~J ~B
Q C~J ~B

S : [S32]

To exploit the locality and sparsity of the various matrices, we
use a scheme called “natural blocking,” where the entire rows
or columns of large matrices can be removed for processing
due to the physical nature (structure) of given matrices.

Eq. S31 is the most time-consuming step in a straightforward
4th order scaling implementation of OS PT2 method (like

Eqs. S24 and S25). But because the occupied and virtual func-
tions (I, A) are localized and the auxiliary expansion functions
Q are also local, the fitting coefficients C~I ~A

Q (where the quadra-
ture point q is implied as in Eq. S27 and S28) must also be local.
In other words, for a given occupied orbital I, only those virtual
and auxiliary functions (matrix elements) that are local to I will be
nonzero, and so YPQ ¼ ∑BC

~I ~B
P C~I ~B

Q þ ¼ ðPsig;BsigÞIðBsig;QsigÞI ,
where Psig, Bsig, Qsig mean that P, B, and Q are local to I, can
be evaluated with a linear scaling effort. In a natural blocking
scheme, the (P, B) batches of the three-index C “matrix” are ex-
amined and the entire rows and columns are removed if they are
not local to I. Furthermore, C~I ~A

Q is arranged optimally for this
operation, which is performed as an efficient dense matrix multi-
ply over the significant virtual (Bsig) and auxiliary (Psig) indices,
using the natural blocking scheme. In deleting the rows and col-
umns, we have used a numerical cutoff of 5 × 10−6 and the error
associated with it is insignificant as shown below.

In another step, the AO to occupied-MO transformation
ðIνjPÞω ¼ ∑μCμIðμνjPÞω is OðM4Þ work. For a large enough sys-
tem, it asymptotically approaches OðM3Þ because the magnitude
of the μν function product decays as a Gaussian with the inter-
function distance. Because the integral operator is short-ranged,
as denoted by a subscript ω, only those integrals that involve basis
functions (μ, ν, and P) that are close each other in real space will
have nonzero values. A significant number of arithmetic opera-
tions can be saved by using this integral sparsity, namely by insert-
ing an IF statement in which the first MO transformation is
skipped if the integral value is zero against some numerical
threshold. We have used 10−6 as an integral threshold criterion,
which is sufficiently tight that it adds no additional error numeri-
cally as shown below. This utilization of sparsity makes the cost of
occupied-index AO-to-MO transformation formally OðM2Þ, in-
stead of OðM3Þ.

Other steps involved in the transformations and evaluations of
various quantities that lead to Eqs. S31 and S32 have also been
accelerated by using the similar blocking scheme and integral
screening (see ref. 35 for more details). The resulting algorithm
is formally cubic scaling (localization, local transformation, and
inspection of the matrices), but due to a relatively small prefactor
of the latter cubic steps it shows a quadratic scaling for favorable
cases before these cubic steps become dominant.

As seen in Fig. S3, linear alkane chains show a quadratic scal-
ing and a significant speedup as compared to the calculation with-
out using local algorithm. On the other hand, the fully three-
dimensional (3D) dense systems like the diamonoid do not show
a significant speedup up to C100 due to the small length scale of
this system even with 100 carbon atoms, ≈10 Å. In contrast, the
length scale of linear alkane with 100 carbon atoms is about
≈125 Å, thus showing a substantial speedup. This relatively mod-
est speedup means that, for fully 3D structures like the diamond
structure, we have simply not yet reached the quadratic or cubic
regime where sparsity can make a significant difference. There
will be a significant speedup using the local algorithm even for
dense 3D systems, however, if one considers large enough sys-
tems. The memory and disk requirement for the local PT2 cal-
culation are also quadratically scaling, moderate to be applicable
for large systems.
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Fig. S1. Accuracy of various theoretical methods for calculating the potential energy curve of the Hþ CH4 → H2 þ CH3 reaction. Reaction coordinate is
defined as [R(CH)-R(HH)] (in Å). CCSD(T)/6-311++G(3df,2pd) results (32) are used as reference. Note that RBH are not included in the training set of XYG3
and XYGJ-OS.
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Fig. S2. The intermolecular potentials for the CH4-C6H6 complexes from various methods. R is defined as carbon of CH4 to the ring center of C6H6 (in Å). Data
in red are the coupled-cluster method with single and double as well as perturbative triple excitations (CCSD)(T) at the complete basis set limit from ref. 33.
XYGJ-OS data are nearly on top of those of XYG3. Note that nonbonded interaction is not included in the training set of XYG3 and XYGJ-OS. But BSSE
corrections are NOT included in the calculations. XYG3 and XYGJ-OS are making use of BSSE to have this good agreement.
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Fig. S3. Scaling of the XYG3, XYGJ-OS, and its local version method as measured by the log of total CPU time vs the alkane chain length.
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Table S1. Mean absolute deviations (MADs, in kcal∕mol) for various benchmark sets with the G3Large basis set. BSSE
correction is not included unless otherwise stated

Methods
HOF IP EA PA BDE NHTBH HTBH NCIE All
(223) (38) (25) (8) (92) (38) (38) (31) (493)

1st rung SVWN (SPL) 130.88 15.14 17.30 5.68 18.14 12.53 17.95 3.29 67.28
2nd BLYP 10.16 6.02 2.47 1.75 7.00 8.29 7.68 1.49 7.84
Rung PW91 22.04 5.19 3.19 1.53 3.75 8.95 9.76 1.31 12.78

PBE 20.71 5.13 2.40 1.56 3.91 8.57 9.48 1.17 12.10
3rd M06-L 5.20 5.31 3.56 1.60 4.17 3.81 4.33 0.59 4.41
Rung TPSS 5.01 5.36 2.41 1.66 5.88 9.04 8.26 1.14 5.33
4th B3LYP 6.08 3.74 2.45 1.40 5.51 4.84 4.26 0.98 4.98
Rung B3LYP-D 3.58 3.77 2.46 1.09 4.16 5.22 5.21 0.65 3.67

B3LYP-D3 4.15 3.77 2.47 1.18 4.29 5.17 4.97 0.64 3.93
X3LYP 5.04 3.69 2.11 1.62 5.09 4.70 4.52 0.84 4.41
PBE0 5.64 3.84 2.97 1.25 3.67 3.56 4.38 0.71 4.36

M06-2X 2.26 2.72 2.37 1.94 1.40 1.26 1.25 0.28 1.86
M06 3.37 3.63 2.04 1.78 1.95 2.31 2.16 0.43 2.67

5th XYG3 3.44 1.30 1.98 1.65 1.86 1.31 0.81 0.32 2.31
XYG3* 1.81 1.31 1.84 1.61 1.56 1.29 0.75 0.32 1.51

Rung XYGJ-OS 1.65 1.23 1.97 1.68 0.71 1.18 0.87 0.35 1.28
MC3BB 3.28 2.78 4.01 1.03 2.43 1.44 0.80 0.58 2.58
B2PLYP 7.59 2.48 2.15 1.52 3.30 2.23 1.73 0.55 4.71
B2PLYP† 2.74† 2.48 2.15 1.52 2.95† 2.23 1.73 0.55 2.45
B2PLYP-D 5.89 2.48 2.15 1.34 2.60 2.47 2.11 0.45 3.85
B2PLYP-D† 1.67† 2.48 2.15 1.34 2.27† 2.47 2.11 0.45 1.88
B2GP-LYP 7.95 2.24 2.72 1.44 2.72 1.36 0.70 0.40 4.62

ωB97X-2(LP) 5.34 1.62 1.53 1.52 1.82 1.95 0.71 0.73 3.23
ωB97X-2(LP)‡ 1.52 1.73 1.56 1.09 1.62 1.67 0.74 0.47§ 1.44

Ab HF 213.42 23.19 26.46 3.09 32.70 9.08 13.51 2.37 107.71
initio MP2 10.63 3.49 3.59 2.13 7.73 5.42 3.91 0.60 7.49

SCS-MP2 11.64 4.02 4.94 1.02 6.23 6.53 5.22 0.32 7.93
SOS-MP2 15.07 4.52 5.82 0.89 6.01 7.09 6.09 0.46 9.64

G2 1.89 0.97 1.31 1.34 1.80 0.97 1.24 0.57 1.56
G3 1.06 1.27 1.13 1.06 1.08 0.97 1.24 0.57 1.06

*Taken from ref. 17 with 6-311+G(3df,2p).
†HOF are taken from ref. 22 with very large basis set of CQZV3P. BDEs are calculated using the corresponding HOF.
‡Taken from ref. 21 or calculated with 6-311++G(3df,3pd).
§BSSE corrections are included for the NCIE set.

Table S2. Mean absolute deviation for RBH of Truhlar’s
NHTBH38 and HTBH38 sets (basis sets: 6-311+G(3df,2p)

RBH UM10 NS16 HAT12 HT38 NHT38 Total

B3LYP 2.02 3.38 8.50 4.31 4.64 4.47
B3LYP-D 2.50 4.03 8.96 5.06 5.18 5.12
B3LYP-D3 2.37 4.01 8.93 4.83 5.13 4.98

Here HT38 refers to the forward and reverse barrier heights for 19
hydrogen transfer reactions; HAT12 refers to the forward and reverse
barrier heights for six heavy-atom transfer reactions, NS16 refers to
the forward and reverse barrier heights for eight nucleophilic
substitution reactions and UM10 refers to the forward and reverse
barrier heights for five association and unimolecular reactions).

Table S3. Mean absolute deviation for Truhlar’s NCIE31 set of nonbonded
interactions (basis sets: 6-311+G(3df,2p)

RBH HB6 CT7 DI6 WI7 PPS5 Total(31)

B3LYP 0.63 0.76 0.61 0.27 2.93 0.95
BSSE corrected 0.55 0.76 0.93 0.38 3.25 1.07

B3LYP-D 0.86 1.49 0.60 0.14 0.34 0.71
BSSE corrected 1.07 1.40 0.33 0.04 0.46 0.67

B3LYP-D3 0.70 1.60 0.78 0.11 0.21 0.70
BSSE corrected 0.93 1.48 0.46 0.01 0.29 0.65

NCIE31 consists of six hydrogen bond (HB) complexes, seven charge-transfer (CT)
complexes, six dipole interaction (DI) complexes, seven weak interaction (WI)
complexes, and five π-π stacking (PPS) complexes. The WI and PPS are dominated
by London dispersion)
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