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I. Quality of Experimental Setup and Data Analysis.A“third check” of
the validity of our data analysis procedure is provided by compar-
ing our results with recent data from other experiments that do
not use blocking electrodes. In Fig. S1, we compare our data
with recent dielectric data on the same hydrated lysozyme powder
and on similarly hydrated myoglobin powders. These data were
collected by researchers (1, 2) using a different experimental set-
up—one without blocking electrodes—and were analyzed using a
different deconvolution method. Note that our data for the “side-
chain relaxation” and the “main relaxation” overlap with the data
from these other experiments, thus validating both our experi-
mental setup and our data analysis.

In particular, a recent dielectric study on the same lysozyme
protein (1) revealed the presence of two relaxation processes
when the protein water content was h ≤ 0.3 g H2O∕g dry protein.
In ref. 3, the slower process has been assigned to the motion of
the protein “side chains,” or to a cross-term due to the relaxation
of water and protein dipoles, and the faster process has been
designated “main.” Here, we adopt the same nomenclature for
the relaxation process. The associated relaxation times (Fig. S1)
are clearly consistent with the relaxation times we labeled as “side
chain” and “main,” both in terms of their temperature depen-
dence and their absolute values.

In addition, the relaxation time observed for myoglobin em-
bedded in poly(vinyl) alcohol at h ¼ 0.4 g H2O∕g dry protein (2)
has absolute values and T dependence that are identical to our
side-chain relaxation (identified as the “β-relaxation” observed
in many glass-forming liquids) assigned to the dynamics of the
protein hydration shell (2).

Note once again that the experimental setup adopted in refs. 1
and 2 makes no use of blocking electrodes. Moreover, the authors
of refs. 1 and 2 used a single relaxation mode to fit the low-fre-
quency process that coincides with our side chain, despite the fact
that it has a remarkably broad frequency spectrum. We instead
decompose it into two contributions and include the “proton”
relaxation. Yet our results agree well with those reported in refs. 1
and 2 for temperatures that have also been studied by other re-
searchers. When we also examine the behavior below 180 K, we
find a crossover not observed by other researchers, possibly due
to lack of data.

Because these relaxation times are consistent with our find-
ings, in terms of both temperature dependence and absolute
values, we conclude that our data analysis of the results obtained
with blocking electrodes and with our deconvolution method is
sufficiently robust to reproduce data collected using a different
experimental setup with no blocking electrodes and with a differ-
ent method of analysis.

To better quantify the accuracy of our fitting procedure, which
includes side-chain relaxation and proton relaxation to account
for the remarkably broad frequency spectrum of the low-fre-
quency process, we provide in Figs. S2 and S3 the details of our
deconvolution method.

Fig. S2 shows the data for the real (left axis) and imaginary
(right axis) components of the complex permittivity (open sym-
bols) at T ¼ 245.2 K. We choose this T because it is one of the
worst fit cases (see Fig. 3 in the main text), with the deconvolution
that results in two relaxation processes with a considerable over-
lap. Nevertheless, even in this worst-case scenario the error of our
analysis is minimized when compared to an analysis that includes
only one relaxation mode for the low-frequency process.

The experimental accuracy is within the size of the symbols
used in Fig. S2. The continuous lines through the symbols are
the result of the simultaneous fit of both components of complex
permittivity. The vertical axis on a log scale reveals small devia-
tions in the fits. The thick black line and the dashed line are the
fitting results for the imaginary component, due to the proton
relaxation and the side-chain relaxation, respectively. For the
sake of clarity, other low-frequency contributions to the mea-
sured data (electrode polarization, Maxwell–Wagner relaxation,
local conductivity) are not shown, as well as the high-frequency
main relaxation that is entering the frequency window investi-
gated at this temperature.

Fig. S3 shows the fit residue of each component of the complex
permittivity (both components have the same residue within the
numerical precision) as a function of the data point, 0 being the
lowest angular frequency and 81 the highest, for the same data-set
shown in Fig. S2. The fitting procedure minimizes iteratively the
difference between the measured ϵ�mðωÞ and the calculated ϵ�cðωÞ
values simultaneously for the real, Δϵ0 ¼ ϵ0m − ϵ0c, and imaginary,
Δϵ″ ¼ ϵ″m − ϵ″c, components of the complex permittivity.

The fit residue is scattered around zero, within �2 × 10−3 for
almost the entire frequency range investigated, indicating that the
fit describes the data well with a relative error of ⪅0.2% for the
fitted points and the fitting parameters. For 1∕T > 6 × 10−3 K−1,
the proton relaxation process moves outside the experimentally
accessible frequency window, but its shape changes continuously
with T, allowing a consistent estimate of the fitting parameters
with a relative error that is at least one order of magnitude larger
than that for higher T.

Two further considerations are in order here. First, the quality
of decomposition is at a maximum if two relaxation modes—not
one or three—are used (see section 2 of ref. 4 for details). In par-
ticular, although the fit with two relaxation terms is statistically
better than the fit with a single relaxation term, the addition of a
third relaxation term in the same frequency range as the first two
yields a nonphysical negative relaxation amplitude (Δϵj in Eq. 6 of
the main text) for one of the processes. Thus, the possible number
of relaxation terms is restricted to one or two. As shown in figure 2
of ref. 4 for similar experimental conditions, the resulting distri-
bution function of relaxation times derived for a single relaxation
process using a standard method (5) does not totally account for
the distribution function obtained in the time domain (6) using an
inverse Laplace transform with no a priori assumption of the type
and number of relaxation processes from raw ϵ�mðωÞ data (7). In-
stead, adding a second relaxation is sufficient to completely over-
lap the experimental distribution function of relaxation times.

Second, we perform an analysis that takes into account the
data at all temperatures, with a deconvolution of the data that
preserves a smooth variation of the values of the fitting para-
meters. Once the analysis of the distribution function of relaxa-
tion times allows us to conclude that there is a proton relaxation
that contributes with a characteristic shape to the total relaxation,
we follow the temperature dependence of the proton relaxation,
along with that of the other contributions, for the entire dataset
available. Only this global fitting procedure can correctly describe
the data.

II. Simulations. Monte Carlo for the thermodynamics. To avoid the
slow equilibration times at low T and the critical slowing of stan-
dard Monte Carlo (MC) dynamics (e.g., Metropolis) in the vici-
nity of a critical point, we extend the cluster algorithm proposed
by Wolff (8) to the model considered here (9). The MC dynamics
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consists of randomly selecting a bonding index σij, and growing a
cluster of thermodynamically correlated bond variables following
the Wolff algorithm (8). If the remaining bonding indices of the
same initial molecule are in the same Potts state, then they are
added to the stack with probability psame ≡minð1;1 − expð−βJσÞÞ,
where β ≡ ðkBTÞ−1 and kB is the Boltzmann constant. This choice
for the probability psame depends on the interaction Jσ and guar-
antees that the connected bonding indices are thermodynamically
correlated (10–12). We next consider the bonding index of a new
molecule that faces the initially chosen bonding index. To guar-
antee that connected facing bonding indices correspond to ther-
modynamically correlated variables, we link them with the
probability pfacing ≡minð1;1 − expð−βJ 0ÞÞ where J 0 ≡ J − PvHB is
the P-dependent effective coupling between two facing bonding
indices that result from the enthalpy of the system. Depending on
P, J 0 can be positive or negative. If J 0 > 0 and the two facing bond-
ing indices are in the same state, then the new bonding index is
added to the cluster with probability pfacing. If J 0 < 0 and the two
facing bonding indices are in different states, then the new bond-
ing index is added with probability pfacing. Only after every pos-
sible direction of growth for the cluster has been considered are
the values of the bonding indices changed in a stochastic way.
Again we consider two cases:

i. If J 0 > 0, all bonding indices are set to the same new value

σnew ¼ ðσold þ ϕÞ mod q; [S1]

where ϕ is a random integer between 1 and q.
ii. If J 0 < 0, the state of every bonding index is changed (rotated)

by the same random constant ϕ ∈ ½1;…q�

σnewi ¼ ðσoldi þ ϕÞ mod q: [S2]

To implement an isobaric ensemble we consider increments
ΔV (positive or negative) to the volume. This global change in
volume is accepted with probability

minð1; exp½−βðΔEþ PΔV −NkBT lnðVf∕V iÞÞ�Þ; [S3]

where β ≡ ðkBTÞ−1; Vi and Vf are, respectively, the initial and
final values of the volume; ΔV ≡ Vf − V i; ΔE≡ Ef − Ei; and

Ei and Ef are, respectively, the initial and final values of the
internal energy.

We define an MC step as 4N updates of the bond indices fol-
lowed by a volume update (i.e., as 4N þ 1 steps of the algorithm).
We control the equilibration by making sure that variables such
as energy, volume, and number of hydrogen bonds (HBs) show a
constant average value with respect to the MC steps. We also
make sure that response function values, e.g., specific heat, cal-
culated from the temperature derivative of enthalpy are the same
(i.e., within the error bars) as the values calculated from the
energy fluctuation using the fluctuation-dissipation theorem. To
compare the MC results with the experiments, we rescale them as
described below.

We simulate the system for 107 MC steps and observe that,
because the cluster MC can make nonlocal moves in the config-
uration space, the Wolff algorithm is 104–106 times faster than
the standard Metropolis MC (9). The Wolff MC thus allows
jumps between configurations that are far apart in the energy
landscape, but with an energy difference of the order of kBT.

MC for the dynamics. When we study the correlation function

CMðtÞ≡ 1

N∑
N

i¼1

hMiðt0 þ tÞMiðt0Þi − hMii2
hMiðt0Þ2i − hMii2

; [S4]

we cannot use the Wolff algorithm because of its nonlocal char-
acteristics. Instead we use the local Metropolis MC in which the
state of each randomly chosen variable σij is randomly set to a
new value σnewij with a probability given by Eq. S3, where the
old and the new states (and their volume and energy) are deter-
mined by σij and σnewij , respectively.

For the Metropolis algorithm we also define an MC step as 4N
updates of the bond indices followed by a volume update (i.e., as
4N þ 1 steps of the algorithm) and we calculate the correlation
time τMC as described in the text. To compare with experimental
data, we rescale τMC with respect to the experimental data, adopt-
ing a logarithmic rescale between the MC steps and seconds:
lnðτMC½s�Þ ¼ −31.3þ 1.74 ln τ[MC Steps]. This rescaling implies
that the lower the T, the longer will be the time in seconds
for a Metropolis MC step, and that the increase in the time scale
for decreasing T is logarithmic, consistent with the logarithmic
collapse of time scales for supercooled water.
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Fig. S1. The comparison of our data with those from previous experiments shows that they follow the same temperature dependence and overlap within the
experimental precision for those temperatures at which data from others are available. In particular, although our data for side-chain relaxation (open circles),
proton relaxation (solid circles), and “main” relaxation (solid triangles) extend below the crossover at about 181 K, side-chain relaxation from ref. 1 (solid
diamonds) and from ref. 2 (solid squares), and “main” relaxation from ref. 1 (open triangles) do not. Our data are for lysozyme powder with hydration level
h ¼ 0.30 g H2O∕g dry protein, as described in the manuscript. Data from ref. 1 are for the same protein powder at the same hydration. Data from ref. 2 are for
embedded myoglobin at similar hydration.

Fig. S2. Example of fitting procedure for our dielectric relaxation data of hydrated lysozyme. Open symbols are the data for the real component (ϵ0, circles and
left axis) and imaginary component (ϵ″, triangles and right axis) of the measured complex permittivity at T ¼ 245.2 K. Lines through the symbols are the result
of the simultaneous fitting of both components. The black thick line indicates the imaginary component of the proton relaxation, and the dashed line indicates
the imaginary component of the side-chain relaxation. Other contributions to the spectrum (electrode polarization, Maxwell–Wagner relaxation, and local
conductivity at low frequency; main relaxation at high frequency) are not shown for the sake of clarity.

Fig. S3. Fitting residue of the dataset in Fig. S2. The x axis indicates the data point (namely, 0 corresponds to the lowest angular frequency, and 81 to the
highest reported in Fig. S2). Deviation from zero is of the order of �2 × 10−3 over almost the entire frequency window investigated, indicating relatively small
errors associated to the fitting procedure.
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