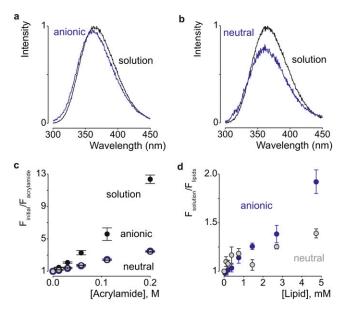

Supporting Information


Bosmans et al. 10.1073/pnas.1108497108

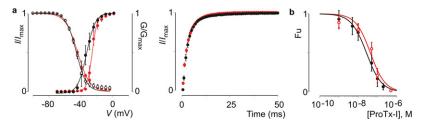

Fig. S1. Apparent affinity measurement of PaurTx3 for rNav1.2a and G1079C. (A) Voltage-dependent inhibition of rNav1.2a (*Left*) and the mutant channel (*Right*) by PaurTx3 over a range of concentrations. G/G_0 is the fraction of uninhibited current elicited by a depolarization to the indicated voltages (*V*). The values of G/G_0 measured in the plateau phase at negative voltages where toxin-bound channels do not open were taken as the fraction unbound (Fu). (*B*) Sequence alignment of a portion of the domain II-domain III intracellular loop of various Nav channel isoforms. Conserved glycines are highlighted by a gray background.

Fig. S2. Apparent affinity of voltage sensor toxins for rNav1.2a and G1079C. (*A*) Yellow dots on the Nav channel cartoon indicate the putative locations of the mutants reported here. Voltage sensors targeted by PaurTx3, ProTx-I, ProTx-II, TsVII, and AaHII also are indicated. (*B*) Apparent affinity for ProTx-II interacting with wt rNav1.2a (black) and the G1079C mutant (red). (C) Apparent affinity of ProTx-I interacting with wt rNav1.2a (black) and the G1079C mutant (red). (C) Apparent affinity of ProTx-I interacting with wt rNav1.2a (black) and the G1079C mutant (red). (C) Apparent affinity of ProTx-I interacting with wt rNav1.2a (black) and the G1079C mutant (green) after channel depalmitoylation. Data are compared with rNav1.2a (gray) and G1079C (red) before addition of 2-Br-palmitate. Concentration dependence for toxin inhibition plotted as Fu measured at negative voltages is shown. n = 3-4 for each toxin concentration, and error bars represent SEM. (*D*) Effect of 50 nM TsVII on rNav1.2a (*Left*) and G1079C (*Right*). Control data are represented in black, whereas toxin data are displayed in red. n = 4, and error bars represent SEM. (*E*) Effect of 10 nM AaHII on wt rNav1.2a and G1079C. Sodium currents are elicited by a depolarization to 0 mV before (black) and after (red) addition of AaHII from a holding potential of -90 mV. Values are reported in Tables S1 and S2.

Fig. S3. Partitioning of PaurTx3 into artificial membranes. Partitioning of PaurTx3 into neutral (POPC) or anionic (1:1 mix of POPC:POPG) membranes was assayed by using tryptophan fluorescence. Fluorescence spectra for 10 μ M toxins in 10 mM Hepes and 1 mM EDTA at pH 7.6 were recorded between 300 and 400 nm (5 nm band pass, 0° polarizer) (SPEX FluoroMax 3 spectrofluorometer) and corrected for vesicle scattering. (*A* and *B*) Fluorescence emission spectra of PaurTx3 in the absence (black) or presence (blue) of 4 mM anionic (*A*) and neutral (*B*) membranes, respectively. (*C*) Stern–Volmer plots for acrylamide quenching of tryptophan fluorescence in solution (black) and in the presence of lipid membranes. Gray, neutral membranes; lbue, anionic membranes. (*D*) Fluorescence intensity at 320 nm plotted as a function of available lipid concentration (60% of total lipids). *n* = 3; error bars are SEM.

Fig. S4. Effects of cholesterol depletion on the gating properties of G1079C. (*A*) Deduced conductance–voltage and steady-state inactivation relationships (*Left*) and recovery from inactivation (*Right*) before (black) and after (red) 5 mM methyl- β -cyclodextrin are shown. (*B*) Apparent affinity of ProTx-I interacting with G1079C before (black) and after (red) membrane cholesterol depletion. Concentration dependence for toxin inhibition plotted as Fu measured at negative voltages is shown. Solid line represents a fit with the Hill equation. n = 3, and error bars represent SEM.

and after depalmitoylation		
	rNav1.2a	G1079C
Before depalmitoylation		

Table S1. Gating characteristics of rNav1.2a and G1079C before

Before depalmitoylation		
Activation, $V_{1/2}$	$-24.3 \pm 0.6 \text{ mV}$	$-33.6 \pm 0.3 \text{ mV}$
Inactivation, V _{1/2}	$-44.8 \pm 0.5 \text{ mV}$	$-46.2 \pm 0.2 \text{ mV}$
Recovery, τ	5.0 ± 0.1 ms	3.3 ± 0.1 ms
After depalmitoylation		
Activation, V _{1/2}	$-24.2 \pm 0.3 \text{ mV}$	$-28.3 \pm 0.5 \text{ mV}$
Inactivation, $V_{1/2}$	$-55.2 \pm 0.5 \text{ mV}$	$-55.6 \pm 0.4 \text{ mV}$
Recovery, τ	13.2 \pm 0.1 ms	12.8 \pm 0.1 ms

Values were obtained by fitting data with single Boltzmann functions (V_{1/2}) or a single exponential function (τ).

A

	rNav1.2a	G1079C	
Before 2-Br-palmitate addition			
PaurTx3	27 <u>+</u> 2 nM	1 ± 1 nM	
	$(n = 1.2 \pm 0.1)$	$(n = 1.0 \pm 0.2)$	
ProTx-II	15 ± 1 nM	2 ± 1 nM	
	$(n = 1.3 \pm 0.1)$	$(n = 1.1 \pm 0.1)$	
ProTx-I	27 ± 3 nM	26 ± 3 nM	
	$(n = 1.1 \pm 0.1)$	$(n = 1.1 \pm 0.1)$	
AaHII	4 ± 1 nM	3 ± 1 nM	
	$(n = 1.1 \pm 0.1)$	$(n = 1.0 \pm 0.1)$	
After 2-Br-palmitate addition			
PaurTx3	10 ± 1 nM	9 ± 1 nM	
	$(n = 1.0 \pm 0.1)$	$(n = 0.9 \pm 0.1)$	
ProTx-II	3 ± 1 nM	3 ± 1 nM	
	$(n = 1.2 \pm 0.1)$	$(n = 1.0 \pm 0.1)$	
ProTx-I	25 ± 4 nM	28 ± 4 nM	
	$(n = 1.1 \pm 0.2)$	$(n = 0.9 \pm 0.1)$	
AaHII	3 ± 1 nM	5 ± 1 nM	
	$(n = 1.1 \pm 0.1)$	$(n = 1.0 \pm 0.1)$	

Table S2. Apparent affinity values for toxins interacting with rNav1.2a and G1079C in control membranes and after 2-Br-palmitate addition obtained using the Hill equation

Hill coefficients (n) are given in parentheses.

Table S3.	Gating characteristics comparison of rNav1.2a, rNav1.2a ^{AAA} , and C1182A before an	b
after depa	mitoylation	

	rNav1.2a	rNav1.2a ^{AAA}	C1182A
Before depalmitoylation			
Activation, $V_{1/2}$	$-24.3 \pm 0.6 \text{ mV}$	$-35.6 \pm 0.3 \text{ mV}$	$-31.7 \pm 0.1 \text{ mV}$
Inactivation, V _{1/2}	$-44.8 \pm 0.5 \text{ mV}$	$-57.6 \pm 0.3 \text{ mV}$	$-53.5 \pm 0.2 \text{ mV}$
Recovery, τ	$5.0 \pm 0.1 \text{ ms}$	$11.2 \pm 0.2 \text{ ms}$	$7.6 \pm 0.2 \text{ ms}$
After depalmitoylation			
Activation, V _{1/2}	$-24.2 \pm 0.3 \text{ mV}$	$-32.8 \pm 0.1 \text{ mV}$	$-34.5 \pm 0.2 \text{ mV}$
Inactivation, V _{1/2}	–55.2 ± 0.5 mV	$-53.7 \pm 0.3 \text{ mV}$	$-50.8 \pm 0.3 \text{ mV}$
Recovery, τ	13.2 \pm 0.1 ms	17.9 \pm 1.0 ms	14.9 \pm 2.0 ms

Values were obtained by fitting data with single Boltzmann functions ($V_{1/2}$) or a single exponential function (τ).

Table S4. Apparent affinity values for toxins interacting with rNav1.2a, rNav1.2a^{AAA}, and C1182A in control membranes and after 2-Br-palmitate addition obtained using the Hill equation

	rNav1.2a	rNav1.2a ^{AAA}	C1182A
PaurTx3	27 ± 2 nM	5 ± 1 nM	10 ± 1 nM
	$(n = 1.2 \pm 0.1)$	$(n = 1.0 \pm 0.1)$	$(n = 1.0 \pm 0.1)$
PaurTx3*	10 ± 1 nM	10 ± 1 nM	6 ± 1 nM
	$(n = 1.0 \pm 0.1)$	$(n = 1.2 \pm 0.1)$	$(n = 1.0 \pm 0.1)$

Hill coefficients (n) are given in parentheses.

*Data shown for after 2-Br-palmitate addition.

PNAS PNAS