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1. Linear Modeling of RNA-Seq Data.Linear modeling of paired-end
RNA-Seq data has been discussed in Methods of the main paper.
The main points include (i) the definition of paired-end bins to
summarize the key information in RNA-Seq data for isoform dis-
covery, (ii) the enumeration of all possible isoforms from defined
subexons, (iii) the modeling of conditional probabilities of obser-
ving reads in different bins given an isoform, and (iv) the con-
struction of a linear model to estimate isoform proportions
from observed bin counts.

Below, we present more details about modeling the fragment
length distribution in F and construction of linear model for
single-end data.

1.1. The fragment length distribution. Modeling the cDNA frag-
ment length distribution is a key part in constructing the design
matrix F of the linear model. Truncated Exponential is a reason-
able candidate for the distribution, based on a Poisson point
process assumption on a fragment’s 3′ end with the 5′ end fixed
and a size selection step in RNA-Seq protocols. Another widely
used candidate in existing RNA-Seq tools is Normal distribution
(1). To evaluate the two distributions, we compared them with
empirical distributions of cDNA fragment lengths in paired-end
RNA-Seq data. However, actual fragment lengths are unknown
in genes exhibiting alternative splicing events, thus posing diffi-
culties in obtaining the empirical distributions. To tackle this pro-
blem, a conservative solution is to calculate an empirical length
distribution of cDNA fragments with both ends in the same sub-
exon where no alternative splicing occurs. The good side of this
solution is that the fragment lengths used in the calculation are
actual, but the downside is that some long fragments across exons
are not considered. Another solution is to calculate an empirical
length distribution based on cDNA fragments in genes with no
alternative splicing events in the UCSC Drosophila melanogaster
(September 2010) annotation (16). This solution has the advan-
tage of observing all sorts of fragment lengths, but its disadvan-
tage is that wrong fragment lengths may be used if the annotation
is incomplete. We employed both solutions to calculate the emp-
rical distributions from dataset 1, and plotted them against either
truncated Exponential or Normal distribution in Q-Q plots
(Fig. S1). Parameters in the truncated Exponential and Normal
distributions are chosen in such a way that both distributions have
the same mean and variance as in the empirical distribution. Q-Q
plots in Fig. S1 show that both truncated Exponential and Normal
distributions are reasonable approximations of the fragment
length distribution.

1.2. Linear modeling of single-end RNA-Seq data. For single-end
RNA-Seq data, we can derive a similar linear model to the
one used for paired-end data (Eq. 3 in the main paper). First, we
enumerate possible isoforms in the same way as for the paired-
end data, and categorize reads into single-end bins, defined as
two-dimensional vectors indicating subexon indices of the reads.
For example, single-end bin (i, j) contains reads whose 5′ and 3′
ends are in subexon i and j, respectively. A single-end bin count is
defined as the number of reads in that bin. Bin counts of every
gene are normalized as bin proportions, denoted by b. Second, we
construct a linear model to estimate isoform proportions p from
observed single-end bin proportions, with a design matrix F as the
conditional probabilies of observing reads in different single-end
bins given an isoform. The modeling and calculation of the
conditional probabilities for single-end data are similar to those

for paired-end data in the main paper. We consider a single-end
bin as equivalent to a combination of multiple paired-end bins.
For example, in a two-subexon gene, reads in single-end bin (1,1)
correspond to paired-end reads in bins (1,1,1,1), (1,1,1,2), and
(1,1,2,2). So the conditional probability of observing reads in
single-end bin (1,1) given an isoform equals to the sum of con-
ditional probabilities of observing reads in each of the three
paired-end bins given the same isoform. In general, we calculate
the conditional probability of observing reads in single-end bin j
given isoform k as ∑r∈SjF

0
rk, where Sj is the set of paired-end bins

corresponding to the single-end bin j, and F0
rk is the conditional

probability for paired-end data whose calculation has been
described in details in the main paper. Last, we write a linear
model in the same formula as in Eq. 3 of the main paper.

For combined paired-end and single-end data, we can simply
construct a linear model by catenating the observation vectors
and combining the design matrices by rows in the linear models
for paired-end and single-end data, respectively. Hence, the
linear model used in SLIDE (sparse linear modeling of RNA-
Seq data for isoform discovery and abundance estimation) can
accomodate for different types of RNA-Seq data: paired-end,
single-end, or both.

1.3. Identifiability and preselection procedures.To avoid the uniden-
tifiability issue due to collinearity in the linear model (Eq. 2 in the
main paper), we applied a preselection procedure: Only isoforms
whose all subexon junctions have been observed are selected as
candidates; for genes with more than two subexons, single-subex-
on isoforms are excluded from the candidates because of their
rare existence. With this procedure, the number of parameters for
an n-subexon gene can be reduced from 2n − 1 to a significantly
smaller number.

About the observations, there are frequently false zero counts
of junction-end bins. We define junction-end bins as bins that
include paired-end reads with at least one end across exon junc-
tions [e.g., junction-end bins (1,1,1,2) and (1,2,2,2) include
paired-end reads with one end covering the junction between sub-
exons 1 and 2, whereas bin (1,1,2,2) is not a junction-end bin].
When bin (1,1,2,2) has positive counts, the expected counts of
bins (1,1,1,2) and (1,2,2,2) should be positive, too; however, due
to the difficulty of mapping junction reads, junction-end bins
(1,1,1,2) and (1,2,2,2) are often observed with false zero counts.
Thus, we exclude false zero junction-end bin proportions from
the observations.

As an illustration of the effects of such preselection proce-
dures, we calculate the numbers of genes with unidentifiability
issues in their linear models (i.e., rankðFÞ < K in Eq. 1 of the
main paper) before and after the preselection procedures for
every group of n-subexon genes (n ¼ 3;…;10). The numbers are
summarized in Table S1, which shows that the preselection pro-
cedures have effectively overcome the unidentifiability issue for
genes with three subexons and alleviated the problem for a few
genes with more subexons. However, the percentage of genes
with unidentifiablity issues remains high after the preselection
procedure for genes with more than three subexons; we see that
the sparse estimation in SLIDE is still necessary.

1.4. L1 vs. L0 regularization. In sparse estimation, L1 penalty in
Lasso is linear and ensures convexity of the objective function
(Eq. 4 in the main paper). It also has the convexity property
in logistic and Poisson regressions. Lasso does variable selection
and shrinkage, thus permitting isoform discovery in SLIDE. L0
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penalty is also a possible choice for sparse estimation. It was re-
ported that L0 penalty can lead to a sparser model when the num-
ber of variables (e.g., the number of isoform candidates) is far
larger than the number of relevant variables (e.g., the number
of existing isoforms), whereas L1 penalty in Lasso has to use a
large λ to screen out spurious variables and causes biases
in retained variables (2, 3). However, L0 regularization is compu-
tationally disadvantageous because it makes the optimization
problem nonconvex, and it has been shown that L1 is a good
surrogate for L0 in many cases. In computational biology, L1 reg-
ularization is shown to be a good approach for high-dimensional
and potentially sparse data (4). In our case, SLIDE does isoform
discovery and abundance estimation in two steps, so the biased
estimates of isoforms in the discovery step would not affect the
subsequent abundance estimation step as long as true isoform
estimates are not shrunk to zeros by Lasso. This is different from
IsoLasso and NSMAP, which use one-step sparse estimation for
simultaneous isoform discovery and abundance estimation (5, 6).
Moreover, in our estimation, the existence of nk (the number of
exons in the kth isoform) in the penalty term would reduce the
difference between L1 and L0 regularization. Therefore, L1 reg-
ularization is a reasonable choice for our sparse estimation.

1.5. Selection of the regularization parameter in sparse estimation.
The selection of the regularization parameter λ (Eq. 4 in the main
paper) is by a stability criterion that aims to return the most stable
results over different runs of estimation (7). Because genes of
the same number of subexons have similar dimðpÞ and dimðbÞ in
Eq. 4 of the main paper, we decided to group genes by their num-
bers of subexons n and select an optimal λðnÞ for each group from
16 candidate values ðλiÞ16i¼1 (see Table 3 of the main paper). This
grouping is particularly advantageous for selecting λ for lowly
expressed genes, whose signal-to-noise ratios are low. Highly
expressed gene signals can counteract the noise in the lowly
expressed genes of the same group.

Suppose that there are mðnÞ genes with n subexons,
n ¼ 3;⋯;10. The selection procedures following the stability cri-
terion are as follows.

1. For the rth gene with n subexons, r ¼ 1;⋯;mðnÞ, use λ ¼ λi,
i ¼ 1;⋯;16 in Eq. 4 to estimate p̂ for 50 runs. In each run,
use randomly sampled one half of the reads in the gene as
input into SLIDE. Define qirk as the proportion of runs in

which p̂k > 0. Define q̄ir ¼ ∑K
k¼1

qirk
∑K

k¼1
Iðp̂k>0 in some runsÞ.

2. Calculate the average of q̄ir over the mðnÞ genes as
~qi ¼ 1

mðnÞ ∑mðnÞ
r¼1 q̄ir.

3. Choose λðnÞ as λi� , where i� ¼ argmaxi ~qi.

The selected λðnÞ for datasets 1–4 and the simulation data are
in Table 3 of the main paper.

2. More Simulation Studies. 2.1. Simulation studies with different
read coverages.To study the isoform discovery accuracy of SLIDE
in lowly expressed genes, we did a simulation study with three
different read coverages: (i) 10 reads per kilobase of an annotated
gene, (ii) 50 reads per kilobase of an annotated gene, and (iii) 100
reads per kilobase of an annotated gene. The simulated reads are
paired-end with 37-bp length in each end. Precision and recall
rates of SLIDE using the simulated data are summarized in
Fig. S2, which shows that SLIDE has improved isoform discovery
accuracy as the read coverage increases, as we expected. The im-
provement is significant when the read coverage increases from
10 reads per kilobase to 50 reads per kilobase, and the improve-
ment becomes less significant when the read coverage increases
further to 100 reads per kilobase. Given that many paired-end
RNA-Seq data have more than 10 million reads, 10 reads per
kilobase would correspond to less than 1 RPKM (number of

reads per kilobase per million of mapped reads) in those data.
We note that a gene with such low read coverage and multiple
exons is not likely to have all its exon junctions covered by reads,
thus posing great difficulties on isoform discovery. As illustrated
by this simulation study, SLIDE is robust to changes in gene
expression levels when read coverage is beyond a certain thresh-
old, and SLIDE has higher precision and recall rates and lower
estimation variance as read coverage increases. When gene ex-
pression is too low (e.g., 10 reads per kilobase), some exons or
exon junctions would not be observed and the dimensionality
of observations in the core linear model would be reduced, thus
resulting in incorrect estimation results by SLIDE. At the read
coverage of 10 reads per kilobase, we have tried other likelihoods
(multinomial and Poisson) to model the responses (i.e., bin
counts) in the linear model of SLIDE, but the precision and recall
rates are similarly low (see subsection 2.2). [Please note that our
Poisson regression has a similar objective function as the maxi-
mum-likelihood approach used in NAMAP (6) has in the optimi-
zation, except for differences in the design matrix and penalty
term.] This missing data problem associated with lowly expressed
genes is not unique to SLIDE, because to accurately recover miss-
ing reads from observed data remains a big challenge for current
RNA-Seq isoform discovery and quantification methods. Because
of data noise and biases introduced at many experimental steps of
the current RNA-Seq protocol, it would be difficult to recover
missing exons or junctions by statistical models.

2.2. Simulation studies with different likelihoods in the core linear
model. To explore the effects of using different likelihoods in
the generalized linear model of SLIDE (Eq 3 in the main paper),
we tried three different likelihoods: Normal (the default), multi-
nomial (logistic regression) and Poisson in the sparse estimation
with simulated data. Reads were simulated under two read cov-
erages, 10 and 100 reads per kilobase. Simulation settings are the
same as described in the main paper. The results in Fig S3 illus-
trate that in general, the three different likelihoods do not give
very different results in both read coverages. Looking more clo-
sely, we find that using Normal likelihood at read coverage
10 reads∕kb gives slightly higher precision and recall rates for
genes with 3–4 subexons, and using Logistic regression at read
coverage 100 reads∕kb gives lower precision rates for genes with
3–5 exons. In our SLIDE model, it is naturally to assume that the
expected bin counts are linear in isoform quantities and to use
an identity link function (Normal likelihood). These exploration
results confirm that Normal likelihood is a reasonable choice.

2.3. Effects of isoform similarity and missing annotations on isoform
discovery. Similarity between different isoforms of the same gene
would pose difficulties on isoform discovery. There are some
cases where the isoform deconvolution is not identifiable because
of the similarity between true isoforms (8, 9). For example, when
some isoforms are fragments of others in the true isoform set,
there would usually be more than one possible set of isoforms
that can explain the observed exon expression levels and exon
junctions.

In situations that annotations have missing but truly expressed
isoforms, there are two different cases. First, when missing iso-
forms have exons not included in annotated isoforms, although
SLIDE is not designed to recover missing exons from data, it can
solve this issue by using de novo exons assembled by other soft-
wares [e.g., Cufflinks (1), Scripture (10)]. Second, when all the
exons in missing isoforms are included in annotated isoforms,
SLIDE can discover the missing isoforms with high accuracy,
especially if every missing isoform has more than one unique
splice junctions. In the difficult case where some missing isoforms
are fragments of annotated isoforms and the isoform deconvolu-
tion is not identifiable, SLIDE would discover a set of longest
isoforms with the highest probability among all the possible sets
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of isoforms. For example, we suppose that a three-exon gene has
exon RPKMs 10, 20, and 10, respectively, and junction reads are
observed between exons 1–2, and exons 2–3. In terms of
the isoform deconvolution, there would be two possible sets of
isoforms: (i) isoform (1,2,3) with RPKM 10 and isoform (2) with
RPKM 10; or (ii) isoform (1,2) with RPKM 10 and isoform (2,3)
with RPKM 10. In this case, SLIDE would favor the latter (set ii),
which has a smaller penalty term.We design SLIDE to favor long-
er isoforms in the sparse estimation, by weighting each isoform
abundance estimate with the inverse of its number of exons. This
is based on our observations that most annotated isoforms
contain many instead of few exons. In real data study, there are
commonly observed 5′ and 3′ end biases in RNA-Seq data, that is,
in our example above, even if the true isoform is (1,2,3), RNA-
Seq read coverage in exons 1 and 3 is very likely to be lower than
the read coverage in exon 2. To counteract the end biases in real
RNA-Seq data, we allow SLIDE to favor isoforms with more
exons in the sparse estimation. Therefore, SLIDE would find
the longest isoform containing all the three exons unless the read
coverage difference between exons 1 and 3 and exon 2 is signifi-
cantly high.

We did simulation studies in the following three cases to illus-
trate the performance of SLIDE when annotations have missing
isoforms but contain all the exons. In gene RhoL, there are four
exons with lengths 379, 172, 286, and 204, respectively. The only
annotated isoform is (1,2,3,4) that contains all four exons. In each
of the following cases, we did 50 simulation runs with 500 paired-
end 37-bp reads simulated in each run.

Case 1. Suppose that isoform (1,3,4) is missing in the annotation
and its expression level is the same as that of isoform (1,2,3,4).
We note that (1,3,4) contains a novel junction between exons 1
and 3 that is not in the annotated isoform (1,2,3,4). For all 50
runs, SLIDE correctly discovered both isoforms.

Case 2. Suppose that isoform (2,3,4) is missing in the annotation
and its expression level is the same as that of isoform (1,2,3,4).
We note that (2,3,4) is a fragment of the annotated isoform
(1,2,3,4). For 49 out of the 50 runs, SLIDE correctly discovered
both isoforms.

Case 3. Suppose that both isoforms (1,3,4) and (2,3,4) are missing
in the annotation and both of their expression levels are the
same as that of isoform (1,2,3,4). SLIDE correctly discovered
all three isoforms in 18 runs. It missed isoform (2,3,4) in 18
runs, missed isoform (1,3,4) in 8 runs, and missed both in
6 runs.

From the results, we can see that it is more difficult to discover
missing isoforms that are fragments of annotated isoforms,
because SLIDE has to tackle end biases in real data. Neverthe-
less, these simulation results show that SLIDE has satisfactory
performance in cases where annotations have missing isoforms.

3. More About mRNA Isoform Discovery on modENCODE Data. 3.1.
More about the comparison between SLIDE and Cufflinks. In the main
paper, we carried out three comparisons between SLIDE and
Cufflinks from different perspectives. First, we compare the
two methods in their default settings, where SLIDE uses genes
and exons from UCSC annotations and Cufflinks uses its de novo
assembled genes and exons (Fig. 2B in the main paper). In the
evaluation step, we compare discovered isoforms by each method
with isoforms in UCSC annotations. We call a discovered isoform
and an annotated isoform matched if they have the same number
of exons and all of their exons overlap. Thus, our evaluation
scheme is not sensitive to exon boundaries as long as de novo
assembled exons are in the same loci as annotated exons. We
agree that this comparison is not fair for Cufflinks, but the results
still reveal two main problems of the Cufflinks results: (i) Cuf-
flinks splits a gene into multiple parts when few junction reads
are observed between certain exons; (ii) Cufflinks merges two

genes on opposite strands if they overlap because the read strand
information is not properly considered. SLIDE does not have
those two problems because it uses annotated gene boundaries
that are mostly accurate. In the second comparison, we applied
both methods to de novo assembled genes and exons by Cufflinks
(i.e., to compare the isoform assembly performance of SLIDE
and Cufflinks given the same set of genes and exons) (Fig. 2C
in the main paper). The comparison results show that SLIDE
and Cufflinks have similar precision and recall rates, which
are, however, much lower than the precision and recall rates
SLIDE had when using annotated genes and exons. We were con-
cerned that the precision and recall rates in the second compar-
ison might have been dominated by the de novo gene boundaries
and exon loci that are different from the annotation. Therefore,
we performed a third comparison between SLIDE and Cufflinks
with only the genes whose de novo assembled exons agree with
annotated exons in their loci. We found that the precision and
recall rates of SLIDE are higher than those of Cufflinks. There-
fore, we concluded that the isoform discovery performance of
SLIDE is better than, or at least comparable to, that of Cufflinks.

The comparison results in the main paper are based on dataset
1 (Table 1 in the main paper). We did the same set of comparisons
on datasets 2–4 (Table 1 in the main paper), and the results are
summarized in Figs. S4 and S5 (results on dataset 1 are in Fig 2 B
and C of the main paper). From Figs. S4 and S5, we observe that
the comparison results on datasets 2–4 are consistent with the
results on dataset 1.

3.2. Comparison between SLIDE and IsoLasso/NSMAP. Here, we
compare SLIDE with two other isoform discovery methods with
lasso-type sparse estimation: IsoLasso (5) and NSMAP (6).

SLIDE is different from IsoLasso (5) in three aspects. (i) Iso-
Lasso enumerates isoforms based on a connectivity graph used by
Scripture (10). This deterministic approach finds the longest
paths indicated by connected paired-end reads and would not
consider isoforms with alternative starts/ends (i.e., one isoform
is a fragment of the other) as isoform candidates. (ii) IsoLasso
uses a binary design matrix to relate reads to isoforms. It does not
fully capture the quantitative relationship between read counts
and isoform abundance. In contrast, our design matix uses con-
ditional probabilities to relate read counts to isoform abundance,
and is flexible in terms of incorporating different types of biolo-
gical information into the modeling (e.g., using GC content to
adjust nonuniform read coverage). (iii) IsoLasso performs iso-
form discovery and abundance estimation simultaneously with
Lasso, a sparse estimation method. However, the penalization
term in Lasso would introduce biases to the abundance estimates.
To fix this issue, SLIDE uses a two-step approach that first dis-
covers isoforms by sparse estimation and subsequently estimates
the abundance of the discovered isoforms by nonnegative least
squares that gives less biased estimates than Lasso does. (iv) Un-
like IsoLasso, SLIDE favors isoforms with more exons in its
sparse estimation. This is because we observe that RNA-Seq data
noise often leads the linear model to fit with multiple isforms
each with a small numbers of exons, contradicting with annota-
tions. To counteract such data noise, we give less penalty to iso-
forms with more exons in the sparse estimation. In addition,
IsoLasso builds isoform candidates from de novo exons directly
assembled by mapped reads, without taking annotated gene and
exon information into account.

We conducted three numerical comparisons between SLIDE
and IsoLasso on isoform discovery based on the same data used
in the comparison between SLIDE and Cufflinks. In the first
comparison, we evaluated both methods in their default settings,
where SLIDE builds isoforms from exons in UCSC annotations
and IsoLasso finds isoforms from its de novo assembled exons.
The discovered isoforms by either method are evaluated by
UCSC annotations, where a discovered isoform is called to match
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an annotated isoform if they have the same number of exons
and all of their exons overlap. Thus, this evaluation scheme is
not sensitive to exon boundaries as long as a discovered isoform
has exons in the same loci as exons of an annotated isoform.
Precision and recall rates are calculated as described in the main
paper. The comparison results in Fig. S6A show that SLIDE has
better precision and recall rates than IsoLasso does. These results
are similar to the first comparison results between SLIDE and
Cufflinks in the main paper. The main reason is that both IsoLas-
so and Cufflinks find isoforms for de novo assembled genes,
whose boundaries are sensitive to RNA-Seq data noise, especially
to biases of junction read counts. These results suggest the im-
portance of scrutinizing de novo assembled genes and exons with
available annotations before performing isoform discovery; how-
ever, because SLIDE and IsoLasso do not start from the same set
of genes and exons, this comparison is not a fair evaluation of
their isoform assembly performance. Thus, we performed a sec-
ond comparison based on isoforms discovered by either method
from de novo genes and exons assembled by IsoLasso. Fig. S6B
shows that SLIDE still has better precision rates than IsoLasso
has for most genes. To further exclude the effects of disagreement
between annotated and de novo assembled exons, we carried out
a third comparison of the two methods using only the de novo
assembled exons that agree with the annotation. We found that
SLIDE has an average precision rate 0.85 and recall rate 0.91,
whereas IsoLasso has an average precision rate 0.79 and recall
rate 0.91. This again shows that SLIDE has higher precision than
IsoLasso has in isoform assembly from the same set of de novo
exons.

NSMAP is a Bayesian model-based method that estimates the
abundance of isoform candidates as MAP (maximum a poster-
iori) estimates (6). It is an extension of the maximum-likelihood
abundance estimation method “statistical inferences for isoform
expression in RNA-Seq” (SIIER) (11), in the sense of expanding
parameters of interest from the abundance of annotated isoforms
to that of all isoform candidates. NSMAP uses a Laplace prior to
introduce sparseness and then discovers isoforms based on MAP
estimates of the abundance of isoform candidates. NSMAP is si-
milar to IsoLasso in four aspects. (i) Both methods use determi-
nistic approaches to construct isoform candidates. NSMAP uses
the minimal set of isoforms that can explain all junction reads,
and it would miss isoforms with alternative starts/ends (i.e.,
one isoform is a fragment of the other) in its isoform candidate
set. (ii) NSMAP is equivalent to IsoLasso in the optimization
step. In the original Lasso paper, it was suggested that Lasso es-
timates can be interpreted as posterior mode estimates when the
regression parameters have independent and identical Laplace
priors (3). Unlike SLIDE, both NSMAP and IsoLasso do not fa-
vor isoforms with more exons in their sparse estimation, but they
only keep the longest isoforms in their candidate sets. (iii) Both
methods perform isoform discovery and abundance estimation
simultaneously with sparse estimation. (iv) Both methods build
isoforms from de novo assembled genes and exons. NSMAP con-
structs genes and exons de novo from read alignment output of
Tophat. Therefore, the differences between SLIDE and NSMAP
in methodology would be similar to those between SLIDE and
IsoLasso. We tried to conduct numerical comparison between
SLIDE and NSMAP. However, a code bug in the NSMAP pack-
age (Version 0.1.0) prohibited us from using it, and our attempts
at contacting the authors were not successful.

4. More About mRNA Isoform Abundance Estimation on modENCODE
Data. To evaluate the isoform abundance estimation accuracy of
SLIDE without knowing the ground truth of isoform quantities in
datasets 1–4, we compare SLIDE to two widely used methods:
statistical inferences for isoform expression in RNA-Seq (SIIER)
(11) and Cufflinks (1). All three methods are used to estimate the
isoform proportions of 317 chr3R genes with multiple isoforms in

the UCSC annotation, and the total number of isoforms is 798.
On dataset 1, the SLIDE and SIIER estimates have a correlation
R ¼ 0.75, and there are 25 genes with significantly inconsistent
estimates between the two methods; i.e., p̂SLIDE < 0.1 and
p̂SIIER > 0.5 or p̂SLIDE > 0.5 and p̂SIIER < 0.1. By detailed manual
inspection, we find that among the 25 genes there are 20 genes
whose SLIDE estimates agree better with the paired-end bin
counts. For example, gene CG9801 has five subexons with
RPKMs 8.25, 5.57, 0, 3.92, and 3.16, respectively, and observed
junctions between subexons 1–2, 2–4, and 4–5 in dataset 1. There
are three isoforms (1,2), (1,2,5), and (1,2,4,5) of CG9801 in the
annotation. SLIDE estimates their proportions as 0.76, 0, and
0.24, respectively, whereas SIIER’s estimates are 0, 0.55, and
0.45, respectively. Because there is no observed junction between
subexons 2 and 5 and the expression levels of subexons 1 and 2 are
higher than those of subexons 4 and 5, the SLIDE estimates seem
more consistent with the data. The rest of the 25 genes include
one gene whose SIIER estimates agree better with the paired-end
bin counts, and four genes with ambiguous bin counts that cannot
differentiate the two sets of estimates. An example of the ambig-
uous cases is geneD1 with five subexons. In dataset 1, the RPKMs
of the five subexons are 327.79, 326.01, 16.6, 6.23, and 0, respec-
tively, and there are observed junction reads between subexons
1–2, 2–3, and 3–4. SLIDE estimates the proportions of annotated
isoforms (1,2,3,4) and (1,2,3) as 0.02 and 0.98, respectively,
whereas SIIER returns estimates 1 and 0, respectively. Based on
the annotation, we would expect subexons 1, 2, and 3 to have
similar expression levels; however, the observed expression in
subexon 3 is significantly lower than that of subexons 1 and 2.
So the data seriously contradicts with the annotation. Hence,
both SLIDE and SIIER cannot reasonably fit the data based on
the annotation. After removing those 25 genes, we have a corre-
lation R ¼ 0.88 between the SLIDE and SIIER estimates.

In the comparison between SLIDE and Cufflinks, the correla-
tion between their estimates on the proportions of the 798 iso-
forms is R ¼ 0.67 on dataset 1. Similarly, we find 35 genes with
significantly inconsistent estimates between SLIDE and Cuf-
flinks, p̂SLIDE < 0.1 and p̂Cufflinks > 0.5 or p̂SLIDE > 0.5 and
p̂Cufflinks < 0.1. Again by detailed manual inspection, we observe
that 30 of them have SLIDE estimates that agree better with the
paired-end bin counts, 3 have Cufflinks estimates that agree with
the bin counts, and 2 have ambiguous bin counts such that both
estimates are reasonable. After removing those 35 genes, we
have a correlation R ¼ 0.85 between the SLIDE and Cufflinks
estimates.

5. More About the Exploration of Read/Fragment Length Effect. In
the exploration of whether different read lengths would affect
the isoform discovery results of SLIDE, we applied SLIDE to
datasets 2 and 3, which are from the same Kc167 sample, with
similar sequencing depth, but of read lengths 37 and 76 bp,
respectively. Surprisingly, the precision and recall rates on the
37-bp data are higher than those on the 76-bp data. In the search
for a possible explanation, we observed that the cDNA fragments
in single-exon genes have different fragment length distributions
in the two datasets: Nð166;262Þ and Nð127;132Þ for the 37-bp and
76-bp data, respectively.

To explore whether the read length or the fragment length has
larger effects on the isoform discovery, we did a simulation study
with two different read lengths (37 and 76 bp) and three different
fragment length ranges (50–100 bp, 100–150 bp, and 150–200 bp).
In each of the 50 simulation runs, 500 paired-end RNA-Seq reads
are generated in each setting for each read length and each frag-
ment length range. We applied SLIDE to the simulated data and
summarized the precision and recall rates of each setting in
Fig. S7,. The figure illustrates that the increase in fragment
lengths from 50–100 bp to 100–150 bp significantly improves the
precision and recall rates of isoform discovery. Changes in frag-
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ment lengths from 100–150 bp to 150–200 bp also improve the
precision and recall rates by increasing their means to some
extent and decreasing the width of their confidence intervals.
Compared to the fragment length changes, read length changes
from 37 bp to 76 bp have smaller effects on the isoform discovery
results.

6. Read Coverage vs. GC Content. It has been reported by several
groups that read coverage has a strong correlation with GC
content in high-throughput DNA sequencing data (2, 12). As
high-throughput sequencing technologies (e.g., DNA sequencing,
RNA-Seq, ChIP-Seq, etc.) have similar characteristics in the se-
quencing step, many researchers believe that a strong correlation
between read coverage and GC content also exists in RNA-Seq
data (13, 14). However, unlike DNA sequencing data, RNA-Seq
read coverage varies in different transcribed regions and is mainly
determined by expression levels and alternative splicing patterns
of the regions (15). It would be difficult to compare read coverage
across subexons, which may occur in different transcripts and thus
have different expression levels. To check the validity of using GC
content correction in our SLIDEmodel, we study the relationship
between RNA-Seq read coverage and GC content within subex-
ons, using RNA-Seq reads on chr3R in dataset 1 (see Table 1 of
the main paper). We use three different window sizes: 10 bp,
30 bp, and 50 bp. For every subexon, we calculate the correlation
coefficient of its windowed average read coverage vs. GC content.
Then, we calculate the percentage of subexons giving positive
correlations among all the subexons with more than n windows
(n ¼ 3;10;…;100), and find that the percentage increases as n
increases. This trend is observed with all the three window sizes.
The percentages for 10-bp windows are summarized in Table S2.
A histogram of the correlations in subexons with more than 100
windows is in Fig. S8. Because we expect that correlations calcu-
lated in subexons with more windows can better represent the
relationship between read coverage and GC content, we conclude
that there is a positive correlation between read coverage and GC
content.

7. Some Other Details in the Analysis.
• In the simulation study of the main paper, we simulated reads

from the 1,972 genes of 3–10 subexons (defined in the main
paper) on chr3R from D. melanogaster annotation (September
2010) of UCSC Genome Browser (16). For each gene, reads
are generated from the annotated isoforms, whose proportions
pk are randomly sampled from f0;0.1;⋯;0.9;1g subject to the
constraint that ∑kpk ¼ 1. For every gene, we simulate 500
reads in each run, with 50 runs in total.

• In the sparse estimation, we selected an optimal λ for each
group of genes with n subexons (n ¼ 3;⋯;10) by a stability
criterion (7). However, there are a small number of genes
where zero isoforms were identified under the selected λ. For
those genes, we reselected a gene-specific λ. In more details,
we replace the previous λ by λ� ¼ maxðλ − 0.1;λ∕2Þ until non-
trivial results were obtained.

• For isoform discovery, SLIDE uses sparse linear model estima-
tion to find isoforms. We note that the linear model for paired-
end data (Eq. 3 in the main paper) is identifiable; i.e. FTF is
invertible (8), for a few genes with 3–10 subexons of D. mela-
nogaster (Table S1). In those cases, we additionally attempted
to use nonnegative least squares (NNLS), whose estimation re-
sults should be less biased than those of L1 penalized estima-
tion. However, compared to the penalized estimation results in
the main paper, we found that the NNLS results include a lot
of short isoforms as truncated fragments of isoforms in the
UCSC annotation. In the example of gene jumu, whose three
subexons have RPKMs 20.86, 42.62, and 25.97, respectively,
there are observed junctions between subexons 1–2 and 2–3.
NNLS discovered isoforms (1,2), (2,3), and (1,2,3) for jumu,
whereas SLIDE only found the longest isoform (1,2,3), which
agrees with the annotation. The possible reason of NNLS
finding short isoforms is that RNA-Seq data have unexpected
read coverage variation among exons in the same transcript
(12–14).
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Fig. S1. Q-Q plots of modeled vs. empirical fragment length distribution on dataset 1. Note that only the fragment lengths between the 5% and 95% per-
centiles of the empirical distribution are used to construct the Q-Q plots, because extremely long or short fragments may be results of mapping errors. (A) Q-Q
plot of truncated Exponential distribution vs. empirical length distribution of cDNA fragments within single-exon genes. (B) Q-Q plot of Normal distribution vs.
empirical length distribution of cDNA fragments within single-exon genes. (C) Q-Q plot of truncated Exponential distribution vs. empirical length distribution
of cDNA fragments within single-isoform genes. (D) Q-Q plot of Normal distribution vs. empirical length distribution of cDNA fragments within single-isoform
genes.
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Fig. S2. Precision and recall rates of SLIDE on simulated data with different read coverages. (A) Read coverage is 10 reads per kilobase. (B) Read coverage is 50
reads per kilobase. (C) Read coverage is 100 reads per kilobase.
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Fig. S3. Precision and recall rates of SLIDE using different likelihoods in simulation with two different read coverages. (A) Normal likelihood, (B) Poisson
likelihood, and (C) multinomial likelihood (logistic regression) with read coverage 10 reads∕kb. (D) Normal likelihood, (E) Poisson likelihood, and (F) multi-
nomial likelihood (logistic regression) with read coverage 100 reads∕kb.
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Fig. S4. Comparison of isoform discovery results by SLIDE (using genes and exons from the UCSC annotation) and Cufflinks. (A) Precision and recall rates of
SLIDE and Cufflinks on dataset 2. The numbers in the figure are the group indices of genes (i.e., numbers of subexons). The squares and stars represent SLIDE
and Cufflinks results, respectively. (B) Precision and recall rates of SLIDE and Cufflinks on dataset 3. The numbers, squares, and stars have the samemeaning as in
A. (C) Precision and recall rates of SLIDE and Cufflinks on dataset 4. The numbers, squares, and stars have the same meaning as in A.
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Fig. S5. Comparison of isoform discovery results by SLIDE (using de novo genes and exons assembled by Cufflinks) and Cufflinks. (A) Precision and recall rates
of SLIDE and Cufflinks on dataset 2. The numbers in the figure are the group indices of genes (i.e., numbers of subexons). The squares and stars represent SLIDE
and Cufflinks results, respectively. (B) Precision and recall rates of SLIDE and Cufflinks on dataset 3. The numbers, squares, and stars have the samemeaning as in
A. (C) Precision and recall rates of SLIDE and Cufflinks on dataset 4. The numbers, squares, and stars have the same meaning as in A.
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Fig. S7. Simulation study of read/fragment length effects on isoform discovery. (A) Precision and recall rates of SLIDE on simulated paired-end RNA-Seq data
with fragment lengths in the range of 50–100 bp and two different read lengths (37 bp vs. 76 bp). 95% confidence intervals of precision and recall rates are
shown as error bars parallel to the x and y axes, respectively. (B) Precision and recall rates of SLIDE on simulated paired-end RNA-Seq data with fragment lengths
in the range of 100–150 bp and two different read lengths (37 bp vs. 76 bp). The confidence intervals are shown in the same way as in A. (C) Precision and recall
rates of SLIDE on simulated paired-end RNA-Seq data with fragment lengths in the range of 150–200 bp and two different read lengths (37 bp vs. 76 bp). The
confidence intervals are shown in the same way as in A.
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Fig. S8. A histogram of correlations between windowed read coverage and GC content in subexons with more than 100 windows of 10-bp size.

Table S1. Number of genes with unidentifiability issues before and after preselection procedures

No. of
subexons

Total no. of
genes

No. of genes with unidentifiability issue before the
preselection procedures

No. of genes with unidentifiability issue after the
preselection procedures

3 295 204 (69.2%) 1 (0.3%)
4 237 228 (96.2%) 198 (83.5%)
5 165 165 (100%) 155 (93.9%)
6 142 142 (100%) 137 (96.5%)
7 82 82 (100%) 80 (97.6%)
8 72 72 (100%) 70 (97.2%)
9 56 56 (100%) 55 (98.2%)
10 35 35 (100%) 35 (100%)

Table S2. Percentages of subexons (>n 10-bp windows) with positive
correlation (R) between read coverage and GC content

n 3 10 20 40 60 80 100

Percentage 77.3% 78.6% 83.0% 87.9% 90.1% 91.0% 91.3%
Mean(R) 0.171 0.174 0.193 0.219 0.227 0.232 0.229
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