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Definitions. In Fisher’s geometric model (1–5), phenotypes are
represented by vectors r that exist in a d-dimensional Euclidean
phenotype-space ℙ = ℝd. In haploids, the genotype space Ghap is
isomorphic to the phenotype space, and it is therefore conve-
nient simply to label alleles by their corresponding phenotype r
and work directly with phenotypes. Mutations are modeled by
adding a mutation vector m to the mutated allele (i.e., r → r +
m). We assume that mutational direction is sampled from a
uniform distribution and that mutational magnitudes are sam-
pled from a specified probability distribution P(m).
The phenotype of a diploid organism rxy is the product of two

constituent alleles rx and ry; thus, to incorporate diploidy, we
must define the mapping from the diploid genotype to the or-
ganismal phenotype. The organismal phenotype space for dip-
loids is identical to that for haploids, ℙ = ℝd, whereas the diploid
genotype space is the direct product of two allelic genotype
spaces, each of which is isomorphic to the organismal phenotype
space (i.e., Gdip = ℝd ⊗ ℝd). We are free to label individual
alleles by the organismal phenotype they produce when homo-
zygous (i.e., ri = rii). We then define the diploid genotype-phe-
notype mapping as the weighted average of the two constituent
alleles: rxy = (cxrx + cyry)/(cx + cy). The weighting represents the
phenotypic dominance relationship between the alleles. Because
of the direct relation between allelic genotypes and organismal
phenotypes in diploids, it is again convenient to elide the ge-
notype-phenotype map and speak simply of allelic “phenotypes”
analogous to haploid phenotypes, which mutate analogously to
those haploid phenotypes as well.
In our theoretical analysis, we focus on the specific situation of

a mutant allele ra + m arising in a population initially mono-
morphic for the wild-type allele ra. It is then convenient to ex-
press the phenotype of the mutant heterozygote as rab = ra +
hm, where h specifies the phenotypic dominance relation of the
mutation m with respect to the wild type.
To map organismal phenotype to fitness, we define a fitness

function w(r). We restrict our consideration to fitness functions
that depend only on the distance from an optimal phenotype and
are monotonically decreasing in distance from that optimum.
For convenience, we set the origin to be at the fitness optimum;
hence, w(r) → w(r).

Range of Adaptive Mutant Alleles. Adaptive mutations are those
that increase the fitness of organisms carrying the mutant allele
rb = ra + m. Given our assumptions about the form of the fitness
function, this requires that jrbj < ra in haploids. In diploids, under
the Hardy–Weinberg assumptions, it is the fitness of the mutant
heterozygote that primarily determines the probability of a new
mutation invading the population. This makes it convenient to
define adaptive mutations in diploids as those that are adaptive
immediately on origination as a heterozygote (i.e., jrabj < ra).
Thus, the range of adaptive mutant alleles in haploids (αhap) and
diploids (αdip) is described by:

αhap ¼ frb : jrbj< rag [S1]

αdip ¼
�
rb :

���rb − − ð1− hÞ
h

ra
���< ra

jhj
�
: [S2]

Both are spheres: αhap has radius ra and is centered at the origin,
and αdip has radius ra/jhj and is centered at −((1 − h)/h)ra.

In diploids, we also wish to distinguish between those adaptive
mutations that are expected to replace the wild type [i.e., w(rbb) >
w(rab) > w(raa)] and those that are not expected to do so because
they have heterozygote advantage [i.e., w(rbb) < w(rab) > w(raa)].
The range of replacing mutant alleles (γ) is given by:

γ ¼

8>>><
>>>:
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[S3]

For incomplete phenotypic dominance (0 < h < 1), γ is a sphere
of radius ra/(1 + h) centered at h/(1 + h)ra. For phenotypic
overdominance (h > 1), the direction of the inequality is
switched and γ is all points that are excluded from this sphere
(but that fall in αdip). The range of adaptive mutants that have
heterozygote advantage is then αdip without γ. Note that αhap,
αdip, and γ are collinear spheres and ra lies on the surface of each
(Fig. 2A).

Probability of Adaptive Mutations. The probability that a mutation
in this model is adaptive can be expressed as a purely geometric
question: What is the probability that the end point of a vector
originating on the surface of a sphere (themutation) will lie within
that sphere (the range of adaptive mutants), given that the
vector’s direction is sampled uniformly? This probability, P < (m/
R;d), depends on the ratio of the magnitude of the vector m to
the radius of the sphere R and the dimensionality d. For con-
venience, let the origin of our space be at the center of the
sphere. We choose R to be the point on the sphere’s surface from
which the vector originates. The condition for the end point to
lie within the sphere is:

jRþmj<R⇔ cosðϕÞ> m
2R

: [S4]

Here, ϕ is π minus the angle between m and R. Note that this
inequality can only be satisfied if m is less than 2R, because
cos(x) ≤ 1. We can determine P < (m/R;d) by enforcing the
condition on ϕ, while integrating over all orientations of m:

p< ðm=R; dÞ ¼
R cos− 1

�
m

2R

�
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R π
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The probability function P < (m/R;d) is monotonically decreasing
over the relevant range of 0 < m ≤ 2R for all dimensionalities.
Two special values deserve mention: P < (0, d) = 1/2 and P < (2,
d) = 0 independent of dimension. The shape of p<

�
m=R; d


for

several dimensionalities is shown in Fig. S7. We compare this exact
result with a long-standing approximation used in the study of

Fisher’s geometric model (1–3), that p< ðm=R; dÞ≈ R∞
m
2R

ffiffi
d

p e−
t2
2 dt.

This approximation is very good at high dimensions, which pre-
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vious studies assumed, but deviates significantly at low dimensions
(Fig. S7). This can be important when exploring Fisher’s geometric
model at these lower dimensionalities, as in our simulations per-
formed at d = 2.

Adaptive Mutations in Haploids and Diploids. Let α be the range of
adaptive mutations, and assume that the mutation supply is
identical for haploids and diploids. The rate at which adaptive
mutations occur in a monomorphic population (u) is then:

u ¼ Θ
2

Z
α
PðmÞdm ¼ Θ

2

Z ∞

0
PðmÞp< ðm=Rα; dÞdm: [S7]

Here, Θ/2 = cNμ (c, ploidy level; N, population size; μ, mutation
rate per individual) is the overall rate at which mutations occur
in the population. We have used the fact that α is a sphere with
the wild-type allele on its boundary in this model. Rα is the radius
of the adaptive region; Rα = ra for haploids and Rα = ra/jhj for
diploids.
We further define the rate at which adaptive mutations invade

the population (υ) and the average initial selective effect of
adaptive mutations (Δw):

υ ¼ Θ
2

Z
α
PðmÞπðmÞdm; [S8]

〈Δw〉 ¼ Θ
2v

Z
α
PðmÞπðmÞΔwðmÞdm: [S9]

The invasion probability π(m) is proportional to Δw(m), the
fitness difference between the mutant individual and the wild-
type fitness (2). In diploids, the mutant individual is hetero-
zygous in the mutant allele, so πdip(m) ∝ Δwdip(m) = w(ra +
hm) − w(ra), whereas in haploids, πhap(m) ∝ Δwhap(m) = w(ra +
m) − w(ra).
We are particularly interested in the relative rates of adaptation

in haploids and diploids. For that reason, we consider the ratios
of u, υ, and 〈w〉 between haploids and diploids. We calculated
these ratios numerically for different values of h and over a range
of the parameter 〈m〉 using the exponential (Fig. S1) and uni-
form (Fig. S2) distributions of mutation sizes. Here, we focus on
two limiting cases: (i) the “large-mutation” limit, where P(m) is
uniform over the entire range of adaptive mutations (which is the
case in both the uniform mutation model and the exponential
mutation model if 〈m〉≫ra), and (ii) the “small-mutation” limit,
where P(m) is nonzero only for infinitesimal mutations.

Large-Mutation Limit. In the large-mutation limit, P(m) is constant
over the entire range of adaptive mutations. The ratio of the
rates of occurrence of new mutations udip/uhap is then:

udip
uhap

¼
R∞
0 PðmÞp< ðjhjm=ra; dÞdmR∞
0 PðmÞp< ðm=ra; dÞdm

¼ 1
jhj: [S10]

This result is achieved by a change of variables m′ = jhjm in the
numerator. Note that this result is the ratio of the radii of the
respective adaptive ranges and is independent of dimension. For
the ratio of the invasion rates υ, we have:

υdip
υhap

¼
R
αdip

PðmÞπdipðmÞdmR
αhap

PðmÞπhapðmÞdm ¼ 1
jhj: [S11]

Once again, this result is obtained by a change of variables, m′ =
jhjm. We made use of the fact that hαdip ≡ αhap (i.e., “multi-
plying” a sphere by a constant results in another sphere). Finally,
the ratio of the average initial selective increments 〈Δw〉 is as
follows:

hΔwidip
hΔwihap

¼ υhap
υdip

R
αdip

PðmÞπdipðmÞΔwdipðmÞdmR
αhap

PðmÞπhapðmÞΔwhapðmÞdm ¼ 1: [S12]

Applicability of the Large-Mutation Limit. The large-mutation limit,
as we have defined it, requires that the entire range of adaptations
be accessible to mutation. In diploids, this means that mutations
must reach a size of 2ra/jhj. However, our qualitative conclusions,
such as the higher rate at which adaptive mutations arise in
diploids under incomplete phenotypic dominance [(0 < h < 1)],
will apply as long as the mutation supply reaches most of the
range of adaptive mutations (i.e., 〈m〉 ∼ ra). This condition can
be relaxed even further at high dimension. In Fig. S7, we see that
as dimensionality increases the range over which there are
an appreciable number of adaptive mutations contracts (i.e., as
dimension goes up), the characteristic size of potential adap-
tive mutations goes down. We can use the approximation

p< ðm=R; dÞ≈R∞
m
2R

ffiffi
d

p e−
t2
2 dt to get a heuristic understanding of how

this affects the applicability of the large-mutation limit. In this
high-dimension approximation, m enters only in the combination
m

ffiffiffi
d

p
=R ; R is effectively modified by 1=

ffiffiffi
d

p
. Therefore, the

mutational supply reaches most adaptive mutations if:

hmi ≳ raffiffiffi
d

p : [S13]

The higher the dimensionality, the weaker is the condition on 〈m〉
and the more applicable the large-mutation limit becomes.

Small-Mutation Limit. In the small-mutation limit, all mutations are
infinitesimal, as enforced by P(m). Therefore, P < (m/Rα;d) ∼
P(0; d) = 1/2. Clearly then, udip = uhap in this limit. Also, be-
cause the mutations are infinitesimal, a linear approximation to
Δw is appropriate and Δwdip(m) = w(ra + hm) − w(ra) ∼
hΔwhap(m). So, υdip ∼ jhjυhap and 〈Δw〉dip ∼ jhjΔwhap.

Heterozygote Advantage in Diploids. We now characterize the
fraction of adaptive mutations in diploids that display hetero-
zygote advantage (δ). We differentiate between δu, the fraction
among all adaptive mutations, and δυ, the fraction among those
that invade:

δu ¼ 1−

R
γPðmÞdmR

αdip
PðmÞdm and δυ ¼ 1−

R
γPðmÞπdipðmÞdmR

αdip
PðmÞπdipðmÞdm: [S14]

The small-mutation limit is trivial, αdip and γ completely overlap
for infinitesimal mutations, and homozygote mutants will never
have lower fitness than heterozygotes for 0 < h < 1, whereas all
adaptive mutations will have heterozygote advantage if h > 1.
Recall also that all adaptive mutations have heterozygote ad-
vantage when h < 0. The large-mutation limit derives immedi-
ately from our previous results concerning the ratios of rates
between diploids and haploids. The only difference is that we are
comparing αdip with γ, which has a radius of ra/(1 + h). So, in the
large-mutation limit:

δu ¼

8>>><
>>>:

1 h< 0

1−
ra=ð1þ hÞ

ra=h
¼ 1

1þ h
0< h< 1

ra=ð1þ hÞ
ra=h

¼ 1
1þ h

h> 1:

[S15]

There are also two special cases: perfect phenotypic recessiveness
h = 0 and perfect phenotypic dominance h = 1. In the case h =
0, mutations cannot be adaptive by our definition because their
fitness as a heterozygote is not better than that of the wild type.
In the case h = 1, the fitness of the mutant heterozygote is equal
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to that of the mutant homozygote; thus, strictly speaking, there is
never heterozygote advantage. We also note that in the special
case of phenotypic codominance (h = 1/2), δu = 2/3. Addition-
ally, δu > 1/2 for all values of h (except h = 0,1).
δυ cannot be obtained by our previous methods; in this case,

the πdip terms in the numerator and denominator differ after the
usual change of variables. In the case of h = 1/2, we made nu-
merical calculations of δu and δυ as a function of 〈m〉 for expo-
nential and uniform distributions of mutation length, as shown in
Figs. S1 and S2. Conditioning on invasion is always seen to in-
crease the frequency of heterozygote advantage in the large-
mutation limit.

Effectiveness of Heterozygote Advantage in the Presence of Drift.
Selection is only consequential when it is strong enough to
outcompete the stochastic fluctuations that arise from random
genetic drift. In the context of balancing selection, this requires
that the fitness advantage of the heterozygote over each homo-
zygote has to be stronger than drift for balanced states to be
effectively maintained.
Formally, the condition for selection to outcompete drift is that

fitness differences have to be at least of order 1/N − the inverse of
the population size (2). In our scenario of a symmetrical Gaussian
fitness function, wðrÞ ¼ exp½− r2=ð2σ2wÞ�, this defines a sphere
around the optimum of radius:

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 2σ2wlog

�
1−

1
N

�s
≈ σw

ffiffiffiffi
2
N

r
; [S16]

inside of which fitness will become effectively indiscernible from
the optimal fitness. Once the population is located within this
effectively neutral sphere, adaptation will cease. Similarly, if both
the heterozygote and homozygote of a mutation with waa < wab >
wbb (i.e., an adaptive mutation with heterozygote advantage) are
located inside the sphere, selection will not be sufficient to sta-
bilize the balanced state. The radius r0 is proportional to the SD
of the fitness function and decreases with the inverse square root
of the population size.
The radius of the effectively neutral sphere sets a limit on how

closely adaptive walks will approach the optimum. It also imposes
a condition on the possibility of adaptation-driven balanced
polymorphisms. It is required that 〈m〉 > r0 for the selection to be
able to outcompete drift and maintain a balanced polymorphism.
Heuristically, this can be understood as the requirement that
mutations be able to span the neutral sphere, thereby allowing
selection to distinguish between the homozygotes outside the
sphere and the heterozygote within it. Note that this condition is
different in kind from our previous condition for heterozygote
advantage to be common, hmi≳ r=

ffiffiffi
d

p
a. Because ra decreases over

the course of an adaptive walk, we expect that although hetero-
zygote advantage might not initially be frequent, it will eventually
become so. The drift condition, however, does not change over the
course of a walk; if it is not met, we expect drift to preclude the
possibility of adaptation-driven balanced polymorphisms entirely.

Our heuristic explanation of the drift condition is appropriate
at small dimensions; however, the consideration of large
dimensions requires more care. In high-dimensional phenotypic
spaces, most adaptive mutations are not primarily directed toward
the optimum but, instead, are largely lateral displacements with
just a small component in the direction of the optimum. Het-
erozygote advantage arises when the intermediate heterozygote is
closer to the optimum than either homozygote (just as the
midpoint of a chord is closer to the center of the circle than either
end point). We can evaluate the possibility of heterozygote ad-
vantage in this situation, at least in the limit that m << ra (note
that this is not inconsistent with our condition for frequent
heterozygote advantage hmi≳ ra=

ffiffiffi
d

p
when d is large). In this

limit, the maximum decrease in the distance to the phenotypic
optimum when comparing the mutant heterozygote with the
fittest of the two homozygotes is approximately δr = (m/2)2/(2r).
The selective advantage of the heterozygote can then be ap-
proximated as w′(r)/w(r)δr. Therefore, for the heterozygote ad-
vantage to exceed drift, given our Gaussian fitness function, it is
necessary that hmi> σw

ffiffiffiffiffiffiffiffiffi
2=N

p ¼ r0. Conveniently, this results in
the same condition that we found previously (when we assumed
that m ≈ ra). Thus, this serves as a universal condition for the
possibility of adaptation-driven balanced polymorphisms in our
model when accounting for drift. It should be noted that the
identity between these low- and high-dimension conditions is
a peculiarity of our choice of a Gaussian fitness function rather
than a general feature of all single-peaked landscapes.
To verify these theoretical predictions, we simulated adaptive

walks toward a fixed fitness optimum for various settings of N and
σw, and 〈m〉. As previously, a 2D codominant Fisher’s model was
used, starting from a monomorphic population at ra = (2,0);
mutations were modeled by an exponential mutation-size dis-
tribution. We kept Θ = 0.1 constant over all scenarios. Adaptive
walks were simulated until either the population successfully
adapted [as defined by at least 90% of individuals being located
inside the effectively neutral sphere (i.e., rij < r0)] or after 10N
generations, whichever came first.
The results of these simulations are shown in Table S1 and

summarized in Fig. 2D. As predicted by our theoretical argu-
ments, consequential balanced states (e.g., where the fitness
differences between heterozygotes and homozygotes are at least
of size 1/N) (as described in the section on ascertainment of
balanced polymorphisms during adaptive walks in Materials and
Methods) are always common in adaptive walks unless average
mutation sizes 〈m〉 become on the order of r0 or smaller. In-
terestingly, in our simulations, the presence of consequential
balanced polymorphisms corresponds well with whether suc-
cessful adaptation, as defined by the population traversing at
least 90% of the initial fitness distance to the optimum, is ob-
served at all. This results from the fact that when m ≈ ra in our
scenario, it is typical that ra ≈ r0 also. Thus, in these cases,
adaptive walks start already very close to the effectively neutral
sphere; consequently, further fitness improvements can no lon-
ger outcompete the stochastic fluctuations attributable to drift.
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Fig. S1. Characteristics of single adaptive mutations in the uniform mutation model as a function of 〈m〉/ra. The five columns span the range from phenotypic
underdominance (h = −0.25) to overdominance (h = 1.25). Different colors show results for d = 2 (black), d = 10 (blue), and d = 50 (red) phenotypic dimensions.
(A) Ratio of the rates at which new adaptive mutations occur. (B) Ratio of the rates of invading mutations. (C) Ratio of the average fitness advantage conferred
by invading mutations. (D) Fraction of adaptive mutations in diploids that have heterozygote advantage. (E) Fraction of invading mutations in diploids that
have heterozygote advantage.
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Fig. S2. Same as in Fig. S1, but data are shown for the exponential mutation model.
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Fig. S3. Probability of observing a balanced polymorphism (frequency 0.05 < x < 0.95) in a diploid population during adaptive walks toward a fixed optimum
for different values of Θ. Solid lines are the absolute probabilities of observing a balanced polymorphism, and dotted lines are the probabilities conditional on
the presence of a polymorphism. The mutation rate was always μ = 2.5 × 10−7. Different values of Θ = 4Nμ correspond to different population sizes. Statistics
were obtained by averaging over 102 walks for each value of Θ.
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Fig. S4. Statistics of adaptive walks toward a fixed fitness optimum in haploid and diploid populations. (A) Mean population fitness (w) in haploids is greater
than that of the diploid population at all times when averaged over replicate walks. (B) Fitness of the most fit individual (wmax) is higher in diploids than it is in
haploids at all time points when averaged over replicate walks. (C) Fitness variance over all individuals. Diploid populations suffer from a high genetic load,
which can be identified as the segregation load attributable to pervasive fitness overdominance. (D) Genotypic variance over all individuals (calculated sep-
arately for each dimension and then summed over all dimensions). Data points are medians over 103 runs, and error bars specify the first and third quartiles.
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Fig. S5. Typical allele frequency trajectories in the moving optimum scenario. The four graphs show the trajectories of all alleles present during the first 5 × 105

generations of four simulation runs with different speeds of environmental change σenv. Simulation parameters were N = 5 × 104, raa = (2,0), and 〈m〉 = σw = 1
(Materials and Methods). Different colors represent different alleles. Under a fast-moving optimum (A), polymorphisms are shorter lived and adaptive alleles fix
at a higher rate compared with a slow-moving optimum (D). The trajectories of balanced alleles in the moving optimum scenario differ from those in a fixed
optimum scenario (Fig. 2B) in the frequency at which two alleles’ balance may shift in response to the movement of the optimum, as can be seen in B and even
more clearly in C.
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Fig. S6. Statistics ofmutation effects in themoving optimummodel. The two upper plots show the distributions ofmutation sizes under a fast-moving optimum
(A) and a slow-moving optimum (B) for different categories of mutations. Dotted lines indicate all newly occurring mutations specified by our standard ex-
ponential mutational model with P(m) ∝ exp(−m), red indicates mutations that eventually became fixed in the population but were never part of a balanced
polymorphism, blue indicates mutations that eventually became fixed but had previously been part of a balanced polymorphism, and green indicates mutations
that were part of a balanced polymorphism but never became fixed. Average mutation sizes decrease, in order, from newly occurring mutations, balanced but
never fixed mutations, balanced and eventually fixed mutations, to fixed but never balanced mutations. The fast- and slow-moving optimum scenarios show
qualitatively similar behavior, with distributions being shifted toward larger sizes in the faster changing environment. The two lower plots show the distributions
of fitness effects (mutant homozygote vs. wild-type homozygote) of the different mutation categories under fast-changing (C) and slow-changing (D) envi-
ronments. Most newly occurring mutations in our model are deleterious as homozygotes. The fixed but never balanced mutations, as expected, confer the
highest average homozygote fitness advantage. The fixed mutations that were intermediately balanced confer slightly lower average fitness advantage. Note
that a substantial amount of these mutations initially have a negative fitness effect as homozygotes, as indicated by the below-zero tail of the distributions.
Finally, the balancedmutations that never became fixed have the lowestfitness advantage as homozygotes. The fast- and slow-moving optimum scenarios again
show qualitatively similar behavior, with distributions being shifted toward larger fitness differences in the faster changing environment. The distributions of
mutation sizes and fitness effects in each scenario were estimated from 104 simulation runs over 107 generations each (Materials and Methods).

Fig. S7. Probability that a vector originating on the surface of a sphere has its end point within that sphere as a function of the vector size m (scaled to the
radius of the sphere R). Several numbers of dimensions are shown. The plots labeled “Exact” show the exact result for P < (m/R;d) from Eq. S6. The plots labeled
“Approx” show the high-dimension approximation to this function originally used by Fisher, p< ðm=R;dÞ≈ R∞

m
2R

ffiffiffi
d

p e− t2
2 dt. The approximation is effective at high

dimension but is inappropriate at low dimension.
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Table S1. Probability of observing balanced polymorphisms during adaptive walks toward
a fixed fitness optimum as a function of relative mutation sizes for various settings of
population size N and SD σw of the Gaussian fitness function

N σw 〈m〉 〈m〉/r0 Adaptedness Pbal (run) Pbal (time)

103 1 1 22 0.90 0.91 0.45
2 1 11 0.86 0.86 0.38
5 1 4.5 0.61 0.70 0.22

10 1 2.2 0.26 0.49 0.11
20 1 1.1 0.06 0.34 0.04

104 1 1 71 0.98 0.96 0.50
2 1 35 0.97 0.95 0.48
5 1 14 0.92 0.89 0.39

10 1 7.1 0.78 0.79 0.31
20 1 3.5 0.50 0.63 0.17
50 1 1.4 0.10 0.35 0.04

100 1 0.71 0.00 0.30 0.02
105 1 1 224 1.00 0.98 0.52

2 1 112 0.99 0.97 0.51
5 1 45 0.99 0.95 0.47

10 1 22 0.96 0.91 0.45
20 1 11 0.88 0.86 0.38
50 1 4.5 0.61 0.69 0.23

100 1 2.2 0.25 0.48 0.11
200 1 1.1 0.06 0.36 0.04
400 1 0.56 0.00 0.32 0.02

104 10 0.5 3.5 0.72 0.65 0.17
10 0.2 1.4 0.43 0.15 0.01
10 0.1 0.71 0.16 0.04 0.00
10 0.05 0.35 0.05 0.02 0.00

“Adaptedness” measures the average improvement in mean population fitness achieved over a walk relative
to the maximally possible improvement: (〈wend〉 − 〈wstart〉)/(1 − 〈wstart〉). Pbal (run) is the probability of at least
one balanced polymorphism arising over the course of the walk. Pbal (time) is the average time during which
balanced polymorphisms are present over the walk. In the last four rows, N and σw were kept constant and the
average mutation size 〈m〉 was varied instead. Statistics were obtained by averaging over 103 walks for each
parameter setting. In accordance with our theoretically predicted limit, consequential balanced polymorphisms
are common until the ratio 〈m〉/r0 becomes on the order of 1 or less.

Table S2. Probability of observing balanced polymorphisms in adaptive walks toward a moving
fitness optimum under different speeds of environmental change

σenv

Runs
extinct, %*

Time
polymorphic, %†

Polymorphisms
balanced, %‡

Substitutions
balanced, %§

1 100 4 1 —

10−1 25 38 44 68
10−2 0 31 74 67
10−3 0 29 85 67
10−4 0 23 93 61
10−5 0 5 58 —

For each speed σenv of the optimum, 103 simulation runs of 107 generations eachwere simulated (Materials and
Methods). Under the very fast-moving optimum (σenv = 1), populations typically became extinct quickly and only
a few polymorphisms were observed in the short time window before extinction. Those polymorphisms were
mostly unbalanced. However, once the optimummoved slower, such that the population could effectively follow
it, polymorphisms became common; typically, more than 50% of those polymorphisms were balanced. Under
a very slowly moving optimum (σenv = 10−5), populations were well adapted most of the time, and thus again less
frequently polymorphic. The fraction of balanced polymorphisms among all polymorphisms, however, remained
substantial in this scenario. In all scenarios, a substantial fraction (60–70%) of the adaptive mutations that
eventually became fixed in the population did go through an intermediate balanced state (these data have
not been collected for the extremely fast-moving, σenv = 1, and extremely slow-moving, σenv = 10−5, optima).
*Percentage of runs in which the population could not successfully follow the fitness optimum (extinction
defined by the mean population fitness approaching zero).
†Percentage of time during which a polymorphism (frequency 0.05 < x < 0.95) was present in the population
averaged over runs (only the time before extinction was considered).
‡Percentage of polymorphisms that were balanced.
§Percentage of all observed substitutions that had ever been part of a balanced polymorphism.
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