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SI Text
Michaelis–Menten Uptake Rate. Let a system be composed of a
closed recipient and a liquid medium where nutrient ions, S, and
(unoccupied) uptake sites, Ef, diffuse freely. Following the enzy-
matic analogy for the uptake (1), we can describe the uptake
process by means of the following reaction:

Sþ Ef#
k1

k− 1

ES ���!k2 Si þ Ef ; [S1]

where ES represents the enzyme–substrate compound and Si is the
nutrient incorporated by the transporter into the cell. Expression
S1 describes a series of reactions in which one nutrient ion is
trapped by an uptake site at a constant rate k1; the site remains
occupied until the enzyme–ion pair is dissociated at a rate k2. An
ion–transporter complex can be dissociated outside the cell at a
rate k−1 (rebound process), although we consider here that this
process occurs at a frequency too small to be taken into account.
The Law of Mass Action (2) allows us to write a system of dy-

namic equations for the concentration (represented by [..]) of the
reacting agents:

d½ES�
dt

¼ k1
�
Ef
�½S�− k2½ES� [S2]

d½Si�
dt

¼ k2½ES� [S3]

d½S�
dt

¼ �− k1
�
Ef
�½S��ν− 1

c [S4]

d
�
Ef
�

dt
¼ − k1

�
Ef
�½S� þ k2½ES�: [S5]

Note that we use different units for the concentrations outside and
inside the cell: The external nutrient concentration [S] is measured
in units of mol/L, whereas the internal concentration of nutrient,
compound, and enzyme ([Si], [ES], and [Ef], respectively) are
measured in mol per cell (Table S1). With this choice of units, the
dynamic equation for the concentration of internal nutrient, Eq.
S3, can be directly identified with the uptake rate of the single cell,
V= d[Si]/dt. The inclusion of the cell volume, νc, is thus necessary
for the dimensional balance of Eq. S4.
Assuming a rapid first encounter of the uptake sites with their

first target ions (i.e., the time needed for the sites to absorb ions at
the initial stage of the reactions is small), the number of occupied
sites can be considered approximately constant (2), that is, d[ES]/
dt ≃ 0; using that, by definition, the (constant) total number of
uptake sites is given by [E] = [Ef] + [ES], we can write

V ¼ k2½E�½S�
½S� þ k2=k1

¼ Vmax½S�
½S� þ KS

; [S6]

that is, the classic Michaelis–Menten (MM) form for the uptake
rate. The kinetic parameters are given by Vmax = k2[E] (maximum
uptake rate) and KS = k2/k1 (half-saturation constant), the former
remaining constant due to the constant character of the total
number of sites, [E].

Diffusion-Limitation Correction for the Uptake Rate. Using the re-
action scheme of Fig. 1 (main text), we deduce here a generalized

expression for the uptake rate that takes into account the effects of
the boundary layer developed by the cell in the diffusion-limitation
regime. Although similar to those that can be obtained using the
approaches of refs. 3 and 4, the deduction of this expression and
some particularities are specially devised for the general frame-
work introduced in this paper.
Replacing the bulk nutrient by the local nutrient surrounding the

cell, S0, the application of the Law of Mass Action (2) to the re-
action scheme of Fig. 1 (main text) leads to the following equations
for the different concentrations:

d½ES�
dt

¼ k1
�
Ef
�½S0�− k2½ES� [S7]

d½Si�
dt

¼ k2½ES� [S8]

d½S0�
dt

¼ �− k1
�
Ef
�½S0� þΦD

�
ν− 1
c [S9]

d
�
Ef
�

dt
¼ − k1

�
Ef
�½S0� þ k2½ES� þΦE: [S10]

Note again that the external (local) nutrient concentration [S0] is
measured in units of mol/L, whereas [Si], [ES], and [Ef] are mea-
sured inmol per cell (Table S1). This allows us to equal Eq. S8with
the uptake rate of the single cell, V = d[Si]/dt, needing once more
the cell volume, νc, in Eq. S9, for dimensional purposes. The terms
in blue in Fig. 1, ΦD and ΦE, are the inflow of nutrient ions from
the bulk to the cell surroundings and the “flow” of new uptake sites
synthesized by the cell (main text).
As discussed in the main text, there are two main limiting

regimes for the cell, namely diffusion limitation (V > ΦD, if ex-
pressed in terms of fluxes) and porter limitation (V < ΦD). We
now assume stationary conditions for the local nutrient concen-
tration, that is, the uptake equals the diffusive flow, and sub-
sequently explore those limits. Under stationary conditions, we
can write ΦD = 4πDrc([S] − [S0]), with D being the diffusion
constant of the nutrient in the medium under consideration and
rc being the cell radius (3, 4). We can, as well, set Eq. S9 equal to
zero, obtaining in this way a closed-form expression for the local
nutrient concentration:

½S0� ¼ 4πDrc½S�
k1
�
Ef
�þ 4πDrc

: [S11]

If we assume that the time needed for the sites to absorb the first
nutrient ions at the initial stage of the reactions is small, the
number of occupied sites can be considered approximately
constant (2). From that condition, d[ES]/dt ≃ 0, and we arrive at
the equation

½ES� ¼ k1½E�½S0�
k2 − k1½S0�: [S12]

Combining Eqs. S11 and S12, and using the definitions [Ef] = [E] –
[ES], V = k2[ES], Vmax = k2[E], and KS = k2/k1 (see above), we
obtain after some algebra the dimensionless quadratic equation
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Vmax

4πDrcKS

�
V

Vmax

�2
−
�
1þ Vmax

4πDrcKS
þ ½S�
KS

�
V

Vmax
þ ½S�
KS

¼ 0: [S13]

This expression is similar to equation 9 in ref. 4, where an
equation for the uptake rate per unit area was obtained following
a different deduction based on the Pasciak and Gavis model (3).
After solving Eq. S13, we can find an approximate solution valid
for both the diffusion and porter limitation regimes (4) that leads
to the generalized MM formulation:

V ¼ Vmax½S�
KS

�
1þ Vmax

4πDrcKS

�
þ ½S�

¼ Vmax½S�
~KS þ ½S�: [S14]

This is the generalized expression for the uptake rate of a cell used
in the individual-based model introduced in the main text.

Individual-Based Model. As mentioned in the main text, the in-
dividual-based model is composed of the equation for the number
of uptake sites synthesized by a cell n(t) (main text, Eq. 6), plus
the equations that keep track of the changes in the internal
content of organic carbon and the different nutrients (in this
case, only nitrogen). We refer to the main text for a detailed
explanation of the dynamic equation for n(t).
In accordance with Shuter (5) and Geider et al. (6), among

others, the equation for the individual’s internal amount of
carbon, C, is a balance between the incoming organic-carbon
flow, with a source term due to photosynthesis dCP/dt, and two
loss terms, the first due to the expenditure of carbon due to
maintenance costs, dCM/dt (cost of keeping the various appara-
tuses and biostructures operational), and the other representing
the biosynthesis of new biomaterial, dCB/dt:

dC
dt

ðtÞ ¼ dCP

dt
ðtÞ− dCM

dt
ðtÞ− dCB

dt
ðtÞ: [S15]

Similarly, in the balance equation of the internal nitrogen content
of the cell, N, we take into account the uptake of nitrogen, dNU/
dt = V, together with the maintenance and biosynthetic costs,
dNM/dt and dNB/dt, respectively:

dN
dt

ðtÞ ¼ dNU

dt
ðtÞ− dNM

dt
ðtÞ− dNB

dt
ðtÞ: [S16]

Now we explain in detail each of those terms.
Photosynthesis term. Photosynthesis is the process by which phyto-
plankton obtainC from inorganic carbon using sunlight as a source
of energy. Following a standard formulation, we consider that the
contribution of photosynthesis to the change of organic carbon is
proportional to the total amount present (7), where the pro-
portionality constant is known as the photosynthetic efficiency, PC:

dCP

dt
ðtÞ ¼ PCðtÞCðtÞ: [S17]

This efficiency dependsmainly on light and temperature, but must
also receive feedback from the internal state of the organism (see,
for instance, ref. 8). We study here only cases with optimal T and
I values, so that there is no need to write an explicit dependence
of PC on those variables. Thus, the efficiency can be written as

PCðtÞ ¼ PmaxPintðtÞ; [S18]

where Pmax is known as the maximum photosynthetic rate, and Pint
keeps track of the internal state of the cell by using a function of
the quota (this dependence is well-discussed in the literature; see,
for instance, refs. 6 and 9. We use here, for simplicity, a linear
function, but more complex functions can be also used):

PintðtÞ ¼ 1−
Qmax −QðtÞ
Qmax −Qmin

¼ QðtÞ−Qmin

Qmax −Qmin
: [S19]

In this way, in cases in whichQ is close toQmin (i.e., very high levels
ofC for the current concentration of internal nutrient), it would be
unnecessary for the production of more C, and photosynthesis
becomes very inefficient. The opposite situation is found whenQ is
close to Qmax.
Nutrient-uptake term.To account for the nutrient incorporated into
the cell, we use the diffusion limitation-corrected uptake rate
described in the main text, Eq. 3, with the appropriate units
[grams of nitrogen per cell (gN/cell), in this case; Table S1]:

dNU

dt
ðtÞ ¼ V ¼ Vmax½S�

KS

�
1þ Vmax

4πDrcKS

�
þ ½S�

¼ Vmax½S�
~KS þ ½S�; [S20]

withVmax = k2[E] andKS= k2/k1. Thus, if we couple this with Eq. 6
(where we transform the units from sites per cell into mol per cell,
i.e., we transform n(t) into [E]), we obtain the dynamic, flexible
description for the uptake rate introduced in the main text.
On the other hand, by fixing Vmax to a given value, we obtain

the static representation for MM that is used in the main text to
benchmark the performance of the dynamic approach.
Maintenance term. This terminology refers to the expenditure, in
terms of C and N, not directly related to growth processes but to
maintaining the integrity of the cell (e.g., cell wall) and running
cellular functions (e.g., uptake process, photosynthesis, repair of
structures) (5).
Maintenance metabolic rates depend on the efficiency of the

processes that are taken into account (6). For the sake of simplicity,
we assume an explicit dependence only on the nutrient-harvesting
apparatus, whereas the rest of contributions (including that of
photosynthesis) collapse into a single constant. (We assume that
this apparatus uses ATPmolecules as an energy source. Therefore,
its maintenance cost is supported only by the C budget.) Then:

dCM

dt
ðtÞ ¼ MCCðtÞ þMC

n Q
− 1dNU

dt
[S21]

dNM

dt
¼ MNNðtÞ: [S22]

Note that the cost of maintenance of the uptake apparatus
depends mainly on the ratio of uptake performance to internal
nutrient (second term of Eq. S21). In this way, we can use a single,
dynamic term for the high expense resulting from the synthesis of
a high number of uptake sites for low [S], together with the cost of
the large number of assimilating enzymes for high [S] (10).
Biosynthesis term. The only biosynthetic process considered here is
the production of new uptake sites. Temperature should influence
the cost of the synthesis of new sites, but as T does not play a
relevant role in this paper (see above), the simplest way to
consider the cost of new components for the nutrient-harvesting
apparatus is

dCB

dt
ðtÞ ¼ BCΘ

�
dn
dt

ðtÞ
�

[S23]

dNB

dt
ðtÞ ¼ BNΘ

�
dn
dt

ðtÞ
�
; [S24]

where the coefficients BX reflect the cost in terms of the currency
X (either nutrient or carbon) of the manufacture of a new uptake
site. The Θ(x) function is defined as Θ(x) = x when x > 0 and
Θ(x) = 0 otherwise. (We use the Θ function because, following
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ref. 11, in our model biomass coming from the cell’s own bio-
material should not be regained.)
Observables. The chemostat conditions allow us to control the
stationary nutrient concentration present in the system. We can,
thus, study the behavior of various population-level observables as
that concentration is changed.
We measure here the uptake rate and uptake parameters

normalized by unit of biomass. For instance, the normalized
population-level uptake rate is defined as

V ¼
 XLðtÞ

i¼1

dNUi

dt
ðtÞ
! XLðtÞ

i¼1

CiðtÞ
!− 1

; [S25]

where dNUi=dtðtÞ represents each individual’s uptake rate, and Ci
is its internal amount of carbon. In the same fashion, we can
define and monitor the population-level maximum uptake rate,
Vmax, and the affinity, aff.
In addition, we measure the average number of uptake sites per

organism, n, at the stationary state:

n ¼ 1
LðtÞ

XLðtÞ
i¼1

niðtÞ: [S26]

Parameterization. Although our approach can be applied to any
phytoplankton species, for the sake of concreteness we focus our
attention here on a generic diatom strain. For the parameterization
of the IBM, we use ranges of values for which we have found
consensus in the literature, using both experimental and theoretical

works (6, 12–16) (see Table S1 for the actual values). For instance,
we have consistently found the values Qmax = 0.16–0.2 gN/gC,
KS = 1–3 μmol/L, and V ð½S� → ∞Þ ¼ V lo

max ¼ 0:1− 0:6gN=gC=d,
for various strains of diatoms. Concretely, in ref. 12, data from
many different experimental sources are collected; importantly,
the kinetic parameters for diatoms form a clear cluster around the
values KS = 1 μmol/L and Vmax

lo = 0.2–0.5 gN·gC−1·d−1. Because,
in our model, the value of Vmax

lo emerges from the dynamics, a
“correct” parameterization will give as a result an emergent
V ð½S�→∞Þ ¼ V lo

max within the proposed range.
The value for the radius of the cell is deduced from the follow-

ing allometric expression, valid for round-shaped diatoms (17):

C ¼
	
0:1167ν 0:881

c if νc > 3000 μm3

0:2877ν 0:811
c otherwise

: [S27]

For parameters specifically related to the uptake sites, we use rs=
10–40 A (16, 18), ν = 104 – 5·105, k1 = 4Drs (19), and k2 = KSk1
(see above). [There is no specific experimental source for those
numbers; this is the order of magnitude of the number of uptake
sites for a diatom (see, for instance, ref. 16), and we are only
assuming that the cell is able to develop those sites during its
lifetime.]
Finally, to parameterize Vmax in the case of the static MM

model, we used the V lo
max value obtained with the dynamic de-

scription (in gN per cell per d) to compare the results obtained.
We obtained a qualitatively similar behavior for all of the set of

parameters used in our simulations (Table S1).
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Fig. S1. Functional dependence of ∂tn on the main variables Q and V (Eq. 6, main text). Note that the change in the number of sites is limited by the maximum
number of sites that the cell can store at its surface (main text).
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Fig. S2. Relative error between the uptake rate obtained with the dynamic approach proposed here, V, and a static version of the IBM where V = VMM = Vlo.
With this specific parameterization, the error reaches a stationary state around 21 ± 2%.

10-8 10-6 10-4 10-2
[S] (mol/l)

10-3

10-2

10-1

100

μ([S])/μmax
μMM([S])/μmax

10-2 100w  (d-1)

10-6

10-4 R*
R*MM

Fig. S3. Normalized growth rate obtained with our model (μ, red) and the diffusion limitation-corrected static MM model (μMM, green). (Inset) Break-even
concentration of the only considered external resource plotted against the dilution rate of the chemostat w, for our approach (R*, purple) and the static MM
formulation (R∗

MM , orange).
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Table S1. Symbols

Symbol Also known as Units Value/range

ΦE Transporter flow sites/d –

ΦD Nutrient diffusive flow mol/d –

[S] Bulk nutrient concentration mol/L –

[S0] Local nutrient concentration mol/L –

[Si] Internal nutrient concentration mol/cell –

[Ef] Free enzyme/porter concentration mol/cell –

[ES] Occupied enzyme/porter concentration mol/cell –

[E] Total enzyme/porter concentration mol/cell –

C Organic carbon per cell gC/cell –

N Nitrogen per cell gN/cell –

n Porters per cell sites/cell –

Q C-based quota gN/gC –

Arel Ratio absorbing:total area – –

k1 Encounter rate (mol/L)−1·d−1
–

k2 Handling/processing rate d−1
–

V Population uptake rate gN·gC−1·d−1
–

Vmax Maximum uptake rate gN·gC−1·d−1
–

KS Half-saturation constant mol/L 10−6

~KS Effective half-saturation constant mol/L –

aff Affinity l·gC−1·d−1
–

w Dilution rate d−1 0.001–2
D Nutrient diffusivity m2·s−1 1.5·10−9

rsite Uptake-site radius m 10·10−10 to 40·10−10

k Sigmoid slope parameter – 5;10
ν Site production rate sites/d 104 – 5·105

Qmax Maximum C-based quota gN/gC 0.167;0.2
Qmin Minimum C-based quota gN/gC 0.04
Cmin Minimum species biomass gC/cell 2.66·10−10;9·10−9

Pmax Maximum photosynthetic rate d−1 3.00
MC

n Uptake maintenance cost – 0.10–3.00
MC Respiration cost d−1 25·10−3

BC Cost of biosynthesis gC/site 0.00
MN

n Site maintenance cost – 0.00
MN Respiration cost d−1 25·10−3

BN Cost of biosynthesis gN/site 0.00
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