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S| Methods

Bacterial Strains. Escherichia coli BL21/DE3 with pSJS1240 [en-
coding rare tRNA genes that increases the translation efficiency
of Methanothermobacter thermautotrophicus glutamyl-tRNA
synthetase (GluRS) in E. coli ; ref. 1], which is maintained with
50 pg/mL spectinomycin, was the genetic background for protein
expression. The pTYB1-GIuRS plasmid was maintained with
100 pg/mL ampicillin for protein production.

The tRNA genes (tRNASN ;. tRNASIL - (RNAG2 o
from M. thermautotrophicus) were previously cloned into con-
structs for in vitro transcription of the tRNA in a pUC18 back-
ground (2). To enhance in vitro transcription efficiency of the
two tRNACI species, their constructs include a self-cleavable
hammer head ribozyme directly upstream of the tRNA, which
was implemented as detailed previously (3).

All mutant tRNAs and GIuRS variants were produced with
the QuickChange II XL Site-Directed Mutagenesis Kit (Agilent
Technologies).

Protein Purification. E. coli strains harboring the pTYB1-GluRS
variants were inoculated (10 mL preculture) into 1 L batches
of standard LB medium supplemented at 1x final concentrations
with 20x NPS [0.5 M (NH4)QSO4, 1M KH2PO4, 1M NazHPO4]
and 50 x 5,052 (25% glycerol, 2.5% glucose, and 10% o-lactose
monohydrate) solutions for auto-induction of protein synthesis
(4) and grown 24 h with shaking at 37 °C.

Harvested cells were resuspended in chitin-column buffer
(20 mM Hepes-KOH, pH 7.2, 500 nM NaCl, 1 mM EDTA,
0.1% Triton X-100, 20 pM PMSF), and subject to sonication
(60% amplitude, 0.5 s pulse, 0.5 s pause, 5x 1 min) on ice.
Cleared lysate was produced by centrifugation of the cell lysate
at 13,000 x g for 1 h at 4 °C. Column chromatography was per-
formed under gravity flow at room temperature. Columns were
filled with 50 mL of chitin beads suspended in 20% ethanol (New
England Biolabs) and equilibrated with 10 column volumes of
chitin-column buffer before the cleared lysate was applied. The
column was washed with 10 additional volumes of column buffer,
flushed with 3 volumes of cleavage buffer (20 mM Tris-HCI,
pH 8.0, 500 mM NaCl, 1 mM EDTA, 50 mM DTT), and incu-
bated overnight at 30°C to stimulate cleavage of the inteine
tag. The column was flushed with elution buffer (20 mM Hepes-
KOH, pH 7.2, 20 mM KCl, 0.2 mM EDTA, 5 mM B-mercap-
toethanol). Fractions that were greater than 95% pure as esti-
mated by SDS-PAGE were pooled together. These pooled
fractions were concentrated with an Amicon Ultra 30 K molecu-
lar weight cutoff centrifugal filters (Millipore), and the protein
solution dialyzed overnight into storage buffer (25 mM Hepes-
KOH, pH 7.2, 500 mM NaCl, 1 mM DTT, 50% glycerol). No
17-kDa contaminant (observed in ref. 5) was detected in the
pooled fractions.

tRNA Transcription and Purification. In vitro transcription of tRNA
was performed following standard procedures (6). Template
plasmids containing tRNA genes were purified with the plasmid
maxi kit (Qiagen), and 100 pg of plasmid was digested with BstNI
(New England Biolabs). The BstNI digested template DNA was
purified by phenol chloroform extraction, followed by ethanol
precipitation and resolved in double distilled water. A His-tagged
T7 RNA polymerase was purified over column of Ni/nitrilotria-
cetate agarose beads according to manufacturer’s instructions
(Qiagen). Transcription reactions [40 mM Tris-HCl, pH 8.0;
4 mM each of UTP, CTP, GTP, and ATP at pH 7.0; 22 mM
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MgCly; 2 mM spermidine; 10 mM DTT; 6 pg pyrophosphatase
(Roche); 60 pg/mL BstNI digested DNA template, approxi-
mately 0.2 mg/mL T7 RNA polymerase] were performed in
1 mL reaction volumes for 6 h at 37 °C. The tRNAs were purified
on 12% denaturing polyacrylamide gel containing 8 M urea and
1 x TBE buffer (90 mM Tris, 90 mM boric acid, 2 mM EDTA).
UV shadowing illuminates the pure tRNA band, which is excised
and extracted three times with 1 M sodium acetate pH 5.3 at 4 °C.
The tRNA extractions are then ethanol precipitated, resolved in
RNase-free distilled water, pooled, and finally desalted using a
Biospin 30 column (BioRad).

tRNA Folding and 32P Labeling. tRNAs were refolded by heating to
100 °C for 5 min and slow cooling to room temperature. At 65 °C,
MgCl, was added to a final concentration of 10 mM to aid fold-
ing. Folded tRNA was then stored at —20°C. Freshly folded
tRNA was directly used for 3P labeling of the terminal adenosine
of the tRNA with the CCA adding enzyme and [a-32P]-labeled
ATP (PerkinElmer), which was performed as described (7).

Aminoacylation Assay. Formation of Glu-tRNA was monitored
with the Wolfson assay (8). The aminoacylation reaction contains
the following components: 1x buffer [SO mM Hepes-KOH
(pH 7.2), 25 mM KCl, 10 mM MgCl,, 5 mM DTT], 10 mM ATP
(pH 7.0), 27 pg/mL pyrophosphatase (Roche Applied Science),
50 mM L-Glu. The saturating concentrations of ATP and Glu
(10 and 50 mM, respectively) for the aminoacylation reaction
are exactly as those used and determined previously (9).

All plateau tRNA aminoacylation levels were determined in a
40 min time course at 37 °C according to the reactions conditions
described above with 1 pM enzyme, 10 pM tRNA plus 400 nM
32P-labeled tRNA. All aminoacylation reactions were carried out
in a 15 pL volume in 1.5 mL eppendorf tubes, and the reaction
mixture was preincubated at 37 °C for 15 s before adding enzyme
from a 10x stock to initiate the time course. Time points were
taken each minute by removing 2 pL aliquots from the reaction
and immediately quenching the reaction into an ice-cold 3 pL
quench solution [0.66 pg/pL nuclease P, (Sigma) in 100 mM
sodium citrate, pH 5.49]. For each reaction, 2 pL of blank reac-
tion mixture (containing no enzyme) was added to the quench
solution as the t = 0 s time point.

The nuclease P, mixture, now containing unaminoacylated
tRNA and glutamyl-tRNA, was then incubated a room tem-
perature for 35 min and 2 pL aliquots were spotted on polyethy-
leneimine-cellulose thin layer chromatography plates (EMD
Chemicals) and developed in running buffer containing 5% acetic
acid and 100 mM ammonium acetate, as in ref. 10. During devel-
opment radioactive spots for AMP and Glu-AMP (representing
free tRNA and Glu-tRNA, respectively) were separated and
then visualized and quantified by phosphorimaging. The ratio of
aminoacylated tRNA to total tRNA was determined to monitor
reaction progress.

Determination of Enzyme Kinetics. All reactions included 20 nM
32P_labeled tRNA, whereas the unlabeled tRNA and enzyme
concentrations were adjusted for each enzyme tRNA pair such
that in a 5 min time course (with 1 min time points) the reaction
progressed linearly and less than 10% of the total tRNA became
aminoacylated. For the WI-GluRS 2 nM of enzyme was used and
the tRNAS"? concentration was varied over seven different
tRNA concentrations from 0.02 to 10.02 pM. For the all remain-
ing enzyme and tRNA pairs, kinetics were determined with the
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following optimal conditions: WT-GluRS 10 nM, tRNAS™" 0.02-
10.02 pM; WT-GIuRS 100 nM, tRNAS! 0.02-10.02 uM; WT-
GIuRS 50 nM, tRNAS! G,:C;, 0.17-20.04 uM; WT-GIuRS
5 nM, tRNAS™ U, :4,, 0.04-20.04 pM; anticodon loop (AL)
3-GIluRS 2 nM, tRNA®"M2 (.18-10.02 pM; AL3-GIuRS 10 nM,
tRNASY (.15-10.02 puM; acceptor stem loop (ASL) 1-GluRS
20 nM, tRNAS™ (.18-10.02 puM; ASLI1-GIuRS 500 nM,
tRNASM  0.14-40.04 pM; WT-GIuRS 150 nM, tRNASI!
Gl :C72 0.17-53.04 |.J.M, WT-GIuRS 20 nM, tl{N[AXGI“1 Ul :A72
0.04-20.04 pM; ASL2-GIuRS 570 nM, tRNAS? 0.27-37.33 pM;
ASL2-GIuRS 1,140 nM, tRNAS" 0.15-10.02 pM; WT-GIuRS
1 uM, tRNAS! G, :Cy, 0.14-42.38 pM; WT-GIuRS 570 nM,
tRNASM U, :4,, 0.27-40.02 pM.

Kinetic constants were derived from plotting initial velocity
of a series of aminoacylation reactions that contained varied
amounts of unlabeled tRNA substrate. The velocity versus
[tRNA] plots were fitted to the standard Michaelis-Menten curve
using Kaleida Graph 3.1 (Synergy Software).

Phylogeny and Bioinformatics. All annotated tRNAS™ and
tRNAS" sequences were used in the phylogenetic calculations,
but a number of potential tRNA pseudogenes, which did not
group among the typical tRNAS™ or tRNAS" sequences, were
removed from the analysis [i.e., with transfer RNA data-
base (tRNAdb) ID codes: tdbD00008758, tdbD00008618,
tdbD00002257, tdbD00002382, tdbD00002406, tdbD00004806,
tdbD00004808, tdbD00000524, tdbD00004637, tdbD00004755,
tdbD00008570, tdbD00004908, tdbD00004902, tdbD00000642,
tdbD00008587, tdbD00008601, tdbD00008598, tdbD00008600,
tdbD00008599, tdbD00008795, tdbD00008796, tdbD00008797].
A third M. thermautotrophicus tRNAS™ isoacceptor is annotated
in the tRNA database (11) (tRNAdb identifier tdbD00008570),
but inspection of the genomic context and sequence of the tRNA
body indicate this to be a tRNAFP™ that could result from a dif-
ferent intron splicing than the annotated version. In total, 735
tRNAS" and tRNAS" sequences were included. Representative
sets (determined as previously and implemented in Multiseq 2.0;
refs. 12-14) of tRNA®S, (RNADS, tRNAMet sequences, each
containing approximately 30 tRNA sequences, were used to
generate independent root points in the tRNAS™ and tRNAS"
phylogeny. Unfortunately, the procedure produced inconsistent
root points that were not statistically supported. For this reason,
only unrooted tRNA phylogenies are presented in Fig 5B and
Dataset S1.

Phylogenetic calculations were performed with PHYML ver-
sion 3.0.1 (15), with the following specifications: A GTR substitu-
tion model, all rate parameters optimized by maximum likelihood
analysis, four rate categories, and initial trees were generated
by maximum likelihood subtree pruning and rebranching search
algorithm and optimized with a nearest neighbor interchange tree
search. The bootstrap values were generated for the resulting
phylogenetic trees by the Shimodaira-Hasegawa method imple-
mented in PHYML (with option -b -4).

Sequence similarity (shown in Fig. S1) was calculated based
on a Blosum60 matrix as implemented in Multiseq 2.0 (13).
Sequences were downloaded from the integrated microbial gen-
omes system (16) and structures from the protein databank (17).
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Multiseq 2.0 (13) and Visual Molecular Dynamics (VMD)
1.8.6 (18) were used for GluRS and glutaminyl-tRNA synthetase
(GInRS) sequence and structure alignments and graphic render-
ing (Figs. 3 and 4, and Fig. S1).

S| Results.

Behavior of GIuRS Variants Toward Acceptor Stem tRNA Mutants. Gi-
ven that the first base pair could be a critical element in tRNASI
versus tRNASY discrimination, we constructed tRNAS"2 my-
tants in which the wild-type A4,:U;, base pair is mutated to
G, :Cy, (as in M. thermautotrophicus tRNAS"Y) and to U, : 45, as
in E. coli tRNAS,

WT and ASL-GIuRSs all showed reduced activity toward the
tRNAS™ [/, :4;, mutant (Table S1). For the tRNAS"™ G, :C;,
mutant, we hypothesized that the GC pair would not open as
easily as an UA pair, and might lead to a greater reduction in
aminoacylation efficiency by the ASL1 and ASL2 variants com-
pared to WI-GIuRS. The G, : C;, base pair reduces catalytic ef-
ficiency for the ASL-GIluRS variants, but also for the WI-GluRS
(Table S1 and Fig. S3). Whereas the WT-GIuRS shows a fivefold
reduced k., for the tRNAC" G, :C;, substrate and the Ky is
increased fourfold, the ASL-GluRS variants experience a greater
change in Ky (up to 33.6 uM for ALS2) compared to no change
in kg, for tRNAS"? G, :C;, versus tRNACIN2,

tRNA Phylogeny. A remarkable feature of the tRNA tree (Fig. 5B,
Dataset S1) is that the tRNAS™ and tRNAS™ species from
archaea are highly similar to one another, and are, in fact, more
similar than they are to their closely related eukaryotic counter-
parts. Given that the tRNAS" and tRNAC™" in archaea are under
consistent evolutionary pressure to serve as substrates to the same
nondiscriminating (ND)-GluRS enzyme, it is possible that evolu-
tionary convergence is in part responsible for the high similarity
of these archaeal tRNA species. Whatever the mechanism,
the archaeal tRNAS"™ and tRNAS™ sequences occupy shorter
branches on the tree and appear to have evolved at a slower rate
than the bacterial and eukaryotic tRNAs. The observation is
further supported by the fact that the archaea (lacking GInRS
and encoding an ND-GIuRS and the Glu-tRNAY" amidotrans-
ferase) still retain the pathway for GIn-tRNAS™ formation that
was utilized by the last common ancestor (19, 20).

The higher evolutionary tempo in the bacterial tRNAS" and
tRNAS™ and the eukaryotic tRNAS" is evident from the long
branch lengths leading to these taxa compared to those seen
among archaeal tRNAs (Fig. 5B). The increased evolutionary
rate is a potential imprint of adaptation in eukaryotes and bac-
teria to the introduction of GInRS that would naturally be absent
from archaea.

Dataset S1: Phylogeny of tRNAG"Y and tRNA®" Sequences
Taxa are labeled according to the unique accession code from the
tRNAdb (11), and all bootstrap values (on a scale from 0.0 to 1.0)
are included as node data. The tree, which is in Newick (.tre) file
format, can be viewed with a number of free software programs,
including TreeView X (21) or Multiseq 2.0 (13) in VMD
1.8.6 (18).
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Fig. S1. Alignment of representative GIuRS and GInRS sequences showing only the region nearby the (A) acceptor stem loop (ASL) and (B) the anticodon loop
(AL). The sequence is color coded according to amino acid similarity (descending from blue to red).
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Fig. S4. A maximum likelihood phylogeny of archaeal tRNA®" sequences. A selection of eukaryotic tRNAS" sequences were used as an outgroup. The evolu-
tionary relationship between the tRNAS" isoacceptors of M. thermautotrophicus is highlighted in blue. The anticodon (as it appears encoded in the tRNA gene)
of the tRNASM isoacceptor is indicated after each species name. Bootstrap values are given at each node, and branches without statistical support (bootstrap
value of zero) have been collapsed. The scale bar shows the number of inferred nucleotide substitutions per site.

O’Donoghue et al.

www.pnas.org/cgi/doi/10.1073/pnas.1117294108

50f 6


http://www.pnas.org/cgi/doi/10.1073/pnas.1117294108

Table S1. Aminoacylation kinetics of Mt-GIuRS variants for mutant tRNA substrates

Bane

Keat, 577 Km, pM keat/Km, s7'uM~1  Loss of efficiency,* x fold  Loss of efficiency,” x fold

WT-GIuRS

tRNAGIN2# 0.41 + 0.04 1.33 + 0.40 0.31 £ 0.10 1.0 1.0

tRNASN2 (), : A5, 0.36 + 0.04 2.61 +£0.90 0.14 + 0.05 2.2 2.2

tRNAGN2G, : C;, 0.09 + 0.01 5.25 + 1.67 0.02 + 0.01 18.2 18.2

ASL1-GIuRS

tRNAGIn2* 0.12+ < 0.01 2.36 + 0.28 0.05 + 0.01 1.0 6.1

tRNASM2 U, A, 0.04 + 0.01 133 + 8.2 0.003 + 0.002 17.6 106.8

tRNAGN2 G, :Cyy 0.10 + 0.03 22.0 £ 3.2 0.005 + 0.001 11.1 67.4
" ASL2-GIuRS

tRNAGIN2* 0.004 + 0.0002 6.49+090 (58+0.8)x10™* 1.0 534.5
“ tRNAGN2 U, : A5, 0.007 + 0.002 298 + 124 (22+1.0)x 104 2.6 1.41 %103

tRNAC"Z G, :Cyy 0.003 + 0.001 33.6 + 18.3 (9.6 £6.0) x 10~° 6.0 3.23x 103

*Relative loss of catalytic efficiency is the ratio of k.,/Ky for each GIURS variant for tRNAS"? over the k.,;/Ky of the same GIURS variant for
the indicated tRNA®"" mutant.

'Relative loss of catalytic efficiency is the ratio of k., /Ky of WT-GIURS for tRNAG? over the k¢,:/Ky of the indicated GIURS and tRNAG!"2
variants.

*Kinetics values for wild-type tRNAS2 (with a A;: U, base pair) from Tables 1 and 2 are reproduced for comparison.
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