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1. The Three-State Model. We define the reaction as

Soc ⇆
k4

k3
S3 ⇆

k2

k1
S2 þNa; [S1]

where S represents states. If P2, P3, and Poc are the probabilities
of being in states S2, S3, and Soc, respectively,

P2 þ P3 þ Poc ¼ 1. [S2]

The first reaction is given by

dPoc

dt
¼ P3k3 − Pock4: [S3]

Assuming that the last reaction is in equilibrium, we have

P2½Na�
P3

¼ k2
k1

¼ K; [S4]

and combining [S2], [S3], and [S4] we get

dPoc

dt
¼ k3

1þ K
½Na�

− Poc

�
k4 þ

k3
1þ K

½Na�

�
: [S5]

The solution of [S5] is a single exponential with rate constant

ks ¼ k4 þ
k3

1þ K
½Na�

: [S6]

The equilibrium constant K may be expressed as a function of the
difference in free energy between the states S3 and S2:

K ¼ C0 expð−ΔGT∕RTÞ; [S7]

where C0 is standard state concentration of 1 mol∕L
(¼1∕1661 Å3)—see ref. 1—and GT is the absolute binding en-
ergy. By expanding the free energy in electrical and chemical
terms,

K ¼ C0 exp
�
zδFV − ΔHu þ TΔSu

RT

�
: [S8]

Separating the electrical term from all the chemical terms, we can
write Eq S8 as

K ¼ Kð0Þ exp
�
zδFV
RT

�
; [S8a]

where Kð0Þ is the equilibrium constant at 0 mV. Combining [S8a]
with [S6], we obtain

ks ¼ k4 þ
k3

1þ Kð0Þ expðzδFVRT Þ
½Na�

: [S9]

Eq. S9 corresponds to Eq. 2 in the main text.
Expressing k3 and k4 in terms of their enthalpic and entropic

components and replacing K by its explicit form Eq. S8 into
Eq. S9, we obtain

ks ¼ A exp
�
−ΔH≠

4 þ TΔS≠4
RT

�
þ A expð−ΔH

≠
3
þTΔS≠

3

RT Þ
1þ C0

½Na�o expð
zδFV−ΔHuþTΔSu

RT Þ ;

[S9a]

where the preexponential factors are all the same and equal to A.
Eq. S9a corresponds to Eq. 3 of the main text.

To compute the Q-V curve, we consider Eq. S3 in the steady
state:

P3k3 − Pock4 ¼ 0. [S10]

The charge movement occurs between S2 and S3, and it is a max-
imum when the voltage is most negative. Then we are interested
in state S3, whose probability is obtained by combining Eqs S2,
S4, and S10:

P3 ¼
½Na�
K

1þ ½Na�
K ð1þ k3

k4
Þ
: [S11]

At very negative V , we have the maximum charge moved (in the
inward direction), and its probability is equal to

P3ðV → −∞Þ ¼ P−∞ ¼ k4
k3 þ k4

; [S12]

and normalizing the total charge by P−∞ we have

Pnor ¼
P3

k4∕ðk3 þ k4Þ
; [S13]

which can be written as

Pnor ¼
1

1þ KP−∞
½Na�

: [S14]

Then Pnor is given by

Pnor ¼
1

1þ P−∞C0 expð−ΔGT∕RTÞ
½Na�

; [S15]

and, by introducing explicitly the electrical and chemical terms

Pnor ¼
1

1þ P−∞C0 expð−ΔHþTΔSþzδFV
RT Þ

½Na�
[S16]

or

Pnor ¼
1

1þ expðzδFV−ΔHþTΔSþRT lnðC0P−∞½Na� Þ
RT Þ

[S17]

that can be written as

Pnor ¼
1

1þ expðzδFðV−V 1∕2Þ
RT Þ

[S18]

from Eq. S17, V 1∕2 is defined as
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V 1∕2 ¼
ΔH − TΔS − RT lnP−∞ þ RT ln½Na�∕C0

zδF
: [S19]

Expanding the P−∞ term and assuming that k3∕k4 ≫ 1, we get

V 1∕2 ¼
ΔH − TΔS − RT ln k4

k3
þ RT ln½Na�∕C0

zδF
; [S20]

but we can replace k4∕k3 by the exponential relation to the
change in free energy in the deoccluding step:

k4
k3

¼ expð−ΔGo∕RTÞ ¼ exp
�
−ΔHo þ TΔSo

RT

�
: [S21]

By replacing [S21] in [S20],

V 1∕2 ¼
ΔH − TΔSþ ΔHo − TΔSo þ RT ln½Na�∕C0

zδF
: [S22]

2. Two-State Model. We consider now only two states S2 and S3
(collapsing Soc with S3) in the steady state:

P3 ¼
1

1þ K
½Na�

; [S23]

P3 ¼
1

1þ C0 expð−ΔGT∕RTÞ
½Na�

; [S24]

P3 ¼
1

1þ expð−ΔGT−RT lnð½Na�∕C0Þ
RT Þ

¼ 1

1þ expðzFδV−ΔHTþTΔST−RT lnð½Na�∕C0Þ
RT Þ

: [S25]

By writing [S25] as

P3 ¼
1

1þ expðzFδðV−V 1∕2Þ
RT Þ

;

V 1∕2 becomes

V 1∕2 ¼
ΔHT − TΔST þ RT lnð½Na�∕C0Þ

zδF
; [S26]

which corresponds to Eq. 4 in the main text. Comparing this
equation with Eq. S22 we find that ΔHT ¼ AH þ ΔH0 and
ΔST ¼ ΔSþ ΔS0.
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