Supporting Information for:

Synthesis of Novel Symmetrical and Unsymmetrical Pyrazines Douglass F. Taber*, Peter W. DeMatteo, and Karen V. Taluskie

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716.

*taberdf@udel.edu

Table of Contents:

General Experimental Section:	Amino Diol 3e : ¹³ C SpectrumS18
Experimental Procedures:	Pyrazine 4a : ¹ H SpectrumS19
Amino Diol 3a : ¹ H SpectrumS9	Pyrazine 4a : ¹³ C SpectrumS20
Amino Diol 3a : ¹³ C SpectrumS10	Pyrazine 4b : ¹ H SpectrumS21
Amino Diol 3b : ¹ H SpectrumS11	Pyrazine 4b : ¹³ C SpectrumS22
Amino Diol 3b : ¹³ C SpectrumS12	Pyrazine 4c : ¹ H SpectrumS23
Amino Diol 3c : ¹ H SpectrumS13	Pyrazine 4c : ¹³ C SpectrumS24
Amino Diol 3c : ¹³ C SpectrumS14	Pyrazine 4d : ¹ H Spectrum
Amino Diol 3d : ¹ H SpectrumS15	Pyrazine 4d : ¹³ C Spectrum
Amino Diol 3d : ¹³ C SpectrumS16	Pyrazine 4e : ¹ H SpectrumS27
Amino Diol 3e : ¹ H SpectrumS17	Pyrazine 4e : ¹³ C SpectrumS28

General Experimental Section:

¹H NMR and ¹³C NMR spectra were obtained as solutions in the deuterated solvents specified at 400 MHz and 100 MHz respectively. ¹³C multiplicities were determined with the aid of a JVERT pulse sequence, differentiating the signals for methyl and methane carbons as 'd', from methylene and quaternary carbons as 'u'. The infrared (IR) spectra were determined as films or nujol mulls. R_f values indicated refer to thin layer chromatography (TLC) on 2.5 x 10 cm, 250 µm silica gel plates. Column chromatography was carried out as indicated on either silica gel or basic alumina. The solvent mixtures reported are volume/volume mixtures. All glassware was oven dried. All reactions were stirred magnetically, under dry N₂, unless otherwise noted. **Experimental Procedures:**

Amino diols **3a**: In a 25 mL round bottom flask, *S*-(-)-2-amino-3-phenyl-1-propanol (**2a**) (1.1 g, 13 mmol) was combined with cyclohexene oxide (**1a**) (1.47 g, 15 mmol). The flask was sealed and the reaction was allowed to proceed for 2 weeks, at which point the mixture was subjected to bulb-to-bulb distillation (pot = 100 °C, 2 mmHg) to remove unreacted amino alcohol and epoxide, followed by column chromatography of the residue (acetone/ CH₂Cl₂/NH₄OH) over basic alumina to give the diastereomeric amino diols **3a** (1.1 g, 34% yield) as a viscous, pale yellow oil. TLC: $R_f = 0.59$ (5:44:1 MeOH/ CH₂Cl₂/NH₄OH). IR (film) 3352, 2930, 2861, and 1454 cm⁻¹; ¹H NMR (CD₃OD) δ 0.78-1.01 (m, 1H), 1.15 (m, 3H), 1.55 (m, 2H), 1.80 (m, 2H), 2.24-2.36 (m, 1H), 2.57-2.74 (m, 1H), 2.832 (m, 1H), 3.11 (m, 1H), 3.22-3.43 (m, 1H), and 7.13 (m, 5H); ¹³C NMR (CD₃OD) δ d 40.40, 58.82, 59.48, 74.67, 75.17, 127.20, 127.32, 129.43, 129.45, 129.59, 130.38, 130.46; u 25.59, 25.76,31.61, 31.82, 35.07, 35.11, 37.81, 39.69; HRMS calcd for C₁₅H₂₃NNaO₂: 272.163, obsd: 272.163 [M+Na].

Amino diols **3c**: Trans-anethole oxide (**1b**) (2.7 g, 16.4 mmol) was combined neat with *R*-2-amino-1-butanol (**2b**) (1.5 g, 16.4 mmol). After a week of stirring under nitrogen at room temperature, the reaction mixture was diluted with 20 mL of methanol and evaporated onto 6 g of basic alumina. An alumina column was then run with a 0-40% acetone/ CH₂Cl₂/NH₄OH gradient. The eluted fractions still had traces of amino alcohol, therefore the residue after evaporation was then subjected to bulb-to-bulb distillation (2 mm Hg, Pot = 115 °C, pot residue) to give the amino diols **3c** (1.5 g , 36% yield). TLC: $R_f = 0.41$, (5:44:1 MeOH/CH₂Cl₂/NH₄OH); IR (film): 3386, 2965, 1512, and 1248 cm⁻¹; ¹H NMR (CD₃OD) δ 0.82 (t, *J* = 7.4 Hz, 1H), 0.88 (t, *J* = 7.6 Hz, 1H), 1.01

(t, J = 6 Hz, 3H), 1.25-1.45 (m, 1H), 1.45-1.65 (m, 1H), 1.89 (m, 1H), 2.39 (m, 1H), 3.30-3.60 (m, 2H), 3.65-3.75 (m, 2H), 4.00 (m, 1H), 6.90 (m, 2H), 7.25 (m, 2H); ¹³C NMR (CD₃OD) δ d 8.88, 9.59, 18.12, 18.62, 54.24, 56.61, 57.27, 63.70, 64.61, 69.84, 113.03, 129.41, 129.61; u 22.13, 24.66, 25.11, 67.47, 130.99, 131.96, 158.94; HRMS calcd for C₁₄H₂₃NNaO₃: 276.158, obsd: 276.158 [M+Na].

Amino diols **3d**: Trans-anethole oxide (**1b**) (2.7 g, 16.4 mmol) and *S*-(-)-2-amino-3phenyl-1-propanol (**2a**) (2.5g, 16.4 mmol) were combined with 5 mL MeOH and the solution was stirred for two weeks at room temperature under nitrogen. The reaction mixture was then taken directly to bulb-to-bulb distillation (2 mm Hg, pot = 100 °C, bottom fraction) and the residue was passed through a short alumina column (acetone/ CH₂Cl₂/NH₄OH) to give the amino diols **3d** (1.37 g, 30% yield).

TLC: $R_f = 0.54$, (5:44:1 MeOH/CH₂Cl₂/NH₄OH); IR (film): 3385, 2931, 1512, and 1248 cm⁻¹; ¹H NMR (CDCl₃) δ 0.9-1.0 (m, 4H), 1.2 (s, 1H), 2.4-3.0 (m, 3H), 3.0-4.0 (m, 4H), 6.7-7.4 (m, 11H). ¹³C NMR (CDCl₃) δ d 19.12, 29.19, 30.88, 55.21, 56.77, 57.54, 64.21,64.74, 70.12, 70.21, 113.64, 113.84, 126.27, 126.42, 126.57, 128.42, 128.50, 128.57, 128.60, 128.81, 128.94, 129.19, 129.24, 129.33, 129.41; u 30.51, 37.69, 38.86, 39.55, 53.43, 53.81, 62.04, 63.89, 64.21, 131.19, 131.48, 158.78, 159.01; HRMS calcd for C₁₉H₂₆N₁O₃: 316.191, obsd: 316.192 [M+H].

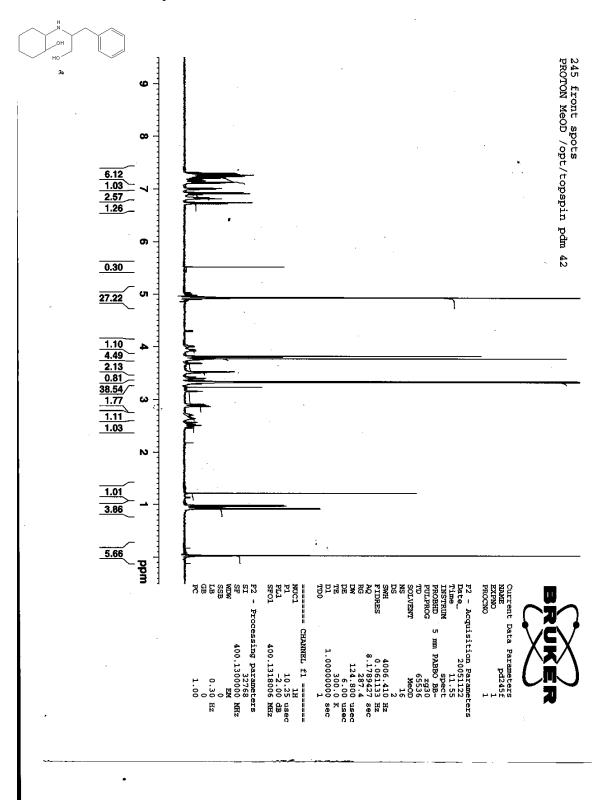
Amino diol **3e**: Following the procedure of Taguchi,⁸ cyclohexene oxide (**1a**) (10 g, 0.10 mol) and 6.0 ml conc. NH₄OH (29% aq.) were combined. The flask was sealed and the reaction was allowed to stir for 5 days. The white slurry was then vacuum filtered with 3 x 25 mL rinses of Et₂O and evaporated to give amino diols **3e** (3.1 g, 29% purified yield). TLC: $R_f = 0.28$ (5:44:1 MeOH/CH₂Cl₂/NH₄OH). MP: 150-151 °C (Lit = 153 °C); IR

(film) 3336, 2929, 2855, 1449 cm⁻¹; ¹H NMR (CDCl₃) δ 0.90-1.05 (m, 1H), 1.15-1.35 (m, 3H), 1.65-1.80 (m, 2H), 1.95-2.10 (m, 2H), 2.30-2.40 (m, 1H), 3.15-3.25 (m, 1H). ¹³C NMR (CDCl₃) δ d 59.28, 74.11; u 24.49, 24.92, 31.20, 33.88; HRMS calcd for C₁₂H₂₃NNaO₂: 236.163, obsd: 236.163 [M+Na].

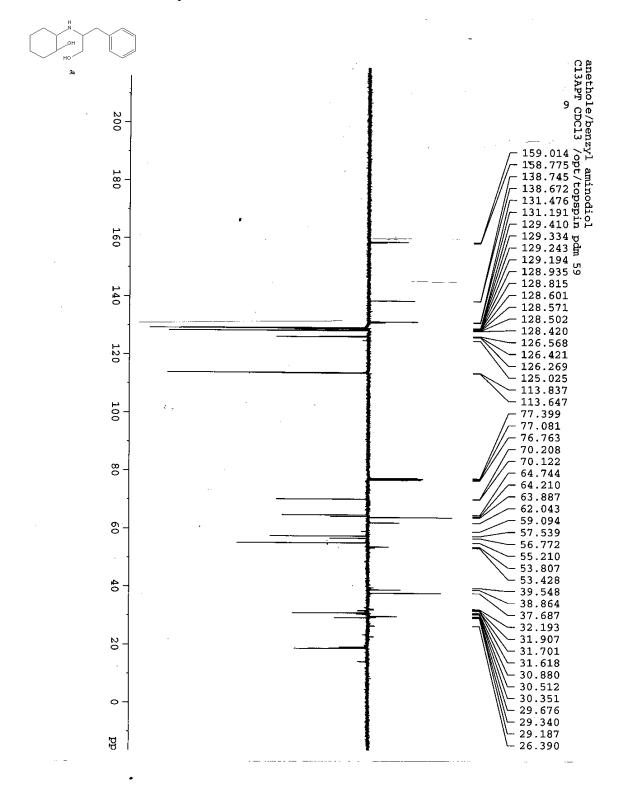
Pyrazine 4a: Oxalyl chloride (2.13 g, 14.0 mmol) diluted to 10 mL with CH₂Cl₂ was added to a 100 mL round bottom flask in a -40 °C bath. DMSO (1.31 g, 16.9 mmol diluted to 10 mL with CH₂Cl₂) over the course of one minute with gas evolution. Amino diols 3a (250 mg, 0.92 mmol in 10 mL CH₂Cl₂) were then added. The reaction was allowed to proceed with the temperature being kept between -20 °C and -40 °C. After 2h, triethylamine (5 mL, 35.8 mmol) was then added with accompanying exotherm to give a turbid yellow solution. The mixture was allowed to warm to 0 °C over the course of 30 min, and the mixture was then partitioned between water and CH₂Cl₂. The combined organic extract was dried over Na₂SO₄. TLC indicated the absence of amino diols 3a. The CH₂Cl₂ solution was decanted into a 250 mL round bottom flask, to which was added 20 mL of absolute EtOH and NH₂OH ⁺ HCl (88 mg, 1.27 mmol). The round bottom flask was fitted with a distillation apparatus and the mixture was heated until the bulk of the CH₂Cl₂ had distilled out. The mixture was then kept at reflux for two hours with an air condenser. The brown solution was then concentrated onto flash silica gel and chromatographed on flash silica gel with a MTBE/PE gradient to give 88 mg of crude pyrazine 4a. This was then further purified via TLC mesh chromatography (1:1 MTBE/PE) to give 48 mg of pyrazine 4a as a pale vellow oil, 23% vield overall from 3a. Pyrazine 4c: Oxalyl chloride (2.13 g, 14.0 mmol) diluted to 10 mL with CH₂Cl₂ was added to a 100 mL round bottom flask in a -40 °C bath. DMSO (1.31 g, 16.9 mmol

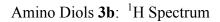
diluted to 10 mL with CH_2Cl_2) over the course of one minute with gas evolution. Amino diols 3c (250 mg, 0.99 mmol) in 10 mL CH₂Cl₂ were then added. The reaction was allowed to proceed with the temperature being kept between -20 °C and -40 °C. After 2h, triethylamine (5mL, 35.8 mmol) was then added with accompanying exotherm to give a turbid yellow solution. The mixture was allowed to warm to 0 °C over the course of 30 min, and the mixture was then partitioned between water and CH_2Cl_2 . The combined organic extract was dried over Na₂SO₄. TLC indicated the absence of amino diols **3c**. The CH_2Cl_2 solution was decanted into a 250 mL round bottom flask, to which was added 20 mL of absolute EtOH and NH₂OH ⁺HCl (88 mg, 1.27 mmol). The round bottom flask was fitted with a distillation apparatus and the mixture was heated until the bulk of the CH₂Cl₂ had distilled out. The mixture was then kept at reflux for two hours with an air condenser. The brown solution was then concentrated onto flash silica gel and chromatographed on flash silica gel with a MTBE/PE gradient to give crude pyrazine **4c**. This was then further purified via TLC mesh chromatography (1:1 MTBE/PE) to give 25 mg of pyrazine 4c as a, 20% yield overall from 3c. TLC: $R_f = 0.50$, (MTBE); IR (film): 2970, 1610, 1514, 1382, and 1250 cm⁻¹; ¹H NMR (CDCl₃) δ 1.33 (t, J = 13.2 Hz, 3H), 2.59 (s, 3H), 2.82 (q, J = 7.6, 13.2 Hz, 2H), 3.85 (s, 3H), 6.98 (d, J = 9.6 Hz, 2H), 7.51 (d, J = 9.6 Hz, 2H), 8.26 (s, 1H); ¹³C NMR (CDCl₃) δ d 13.77, 22.84, 55.38, 113.82, 130.41, 140.51; u 28.36, 131.44, 148.23, 152.39, 155.18, 159.91; HRMS calcd for C₁₄H₁₇N₂O: 229.134, obsd: 229.133 [M+H].

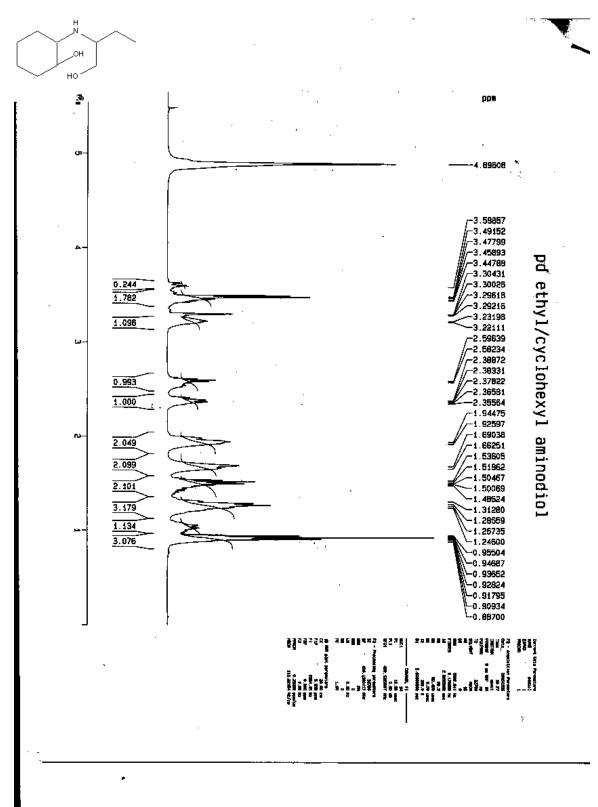
Pyrazine **4d**: Oxalyl chloride (2.13 g, 14.0 mmol diluted to 10 mL with CH_2Cl_2) was added to a 100 mL round bottom flask in a -40 °C bath. DMSO (1.31 g, 16.9 mmol diluted to 10 mL with CH_2Cl_2) over the course of one minute with gas evolution. Amino

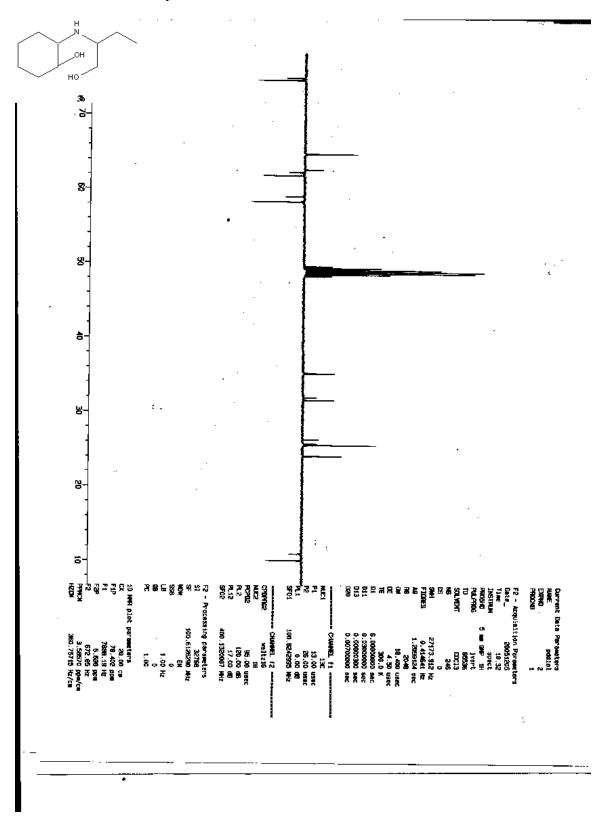

diols **3d** (315 mg, 1.0 mmol in 10 mL CH₂Cl₂) were then added. The reaction was allowed to proceed with the temperature being kept between -20 °C and -40 °C. After 2h, triethylamine (5 mL, 35.8 mmol) was then added with accompanying exotherm to give a turbid yellow solution. The mixture was allowed to warm to 0 °C over the course of 30 min, and the mixture was then partitioned between water and CH₂Cl₂ The combined organic extract was dried over Na₂SO₄. TLC indicated the absence of amino diols **3d**. The CH₂Cl₂ solution was decanted into a 250 mL round bottom flask, to which was added 20 mL of absolute EtOH and NH₂OH ⁺ HCl (88 mg, 1.27 mmol). The round bottom flask was fitted with a distillation apparatus and the mixture was heated until the bulk of the CH₂Cl₂ had distilled out. The mixture was then kept at reflux for two hours with an air condenser. The brown solution was then concentrated onto flash silica gel and chromatographed on flash silica gel with a MTBE/PE gradient to give crude pyrazine 4d. This was then further purified via TLC mesh chromatography (1:1 MTBE/PE) to give 25 mg of pyrazine 4d as a pale yellow oil, 15% yield overall from 3d. TLC: $R_f = 0.52$, (MTBE); IR (film): 2920, 2360, 1514, and 1251 cm⁻¹; ¹H NMR (CDCl₃) δ 1.02 (s, 3H), 1.49 (s, 2H), 2.42 (s, 3H), 3.04 (s, 1H), 3.69 (s, 3H), 4.01 (s, 2H), 6.83 (d, J = 6.4 Hz, 2H), 7.00-7.20 (m, 5H), 7.37 (d, J = 6.8 Hz, 2H), 8.07 (s, 1H): ¹³C NMR (CDCl₃) & d 22.70, 26.80, 55.20, 113.64, 126.40, 128.48, 128.84, 130.30, 141.07; u 41.51, 131.02, 138.53, 148.44, 152.54, 159.81; HRMS calcd for C₁₉H₁₈N₂NaO: 313.132, obsd: 313.133[M+Na].

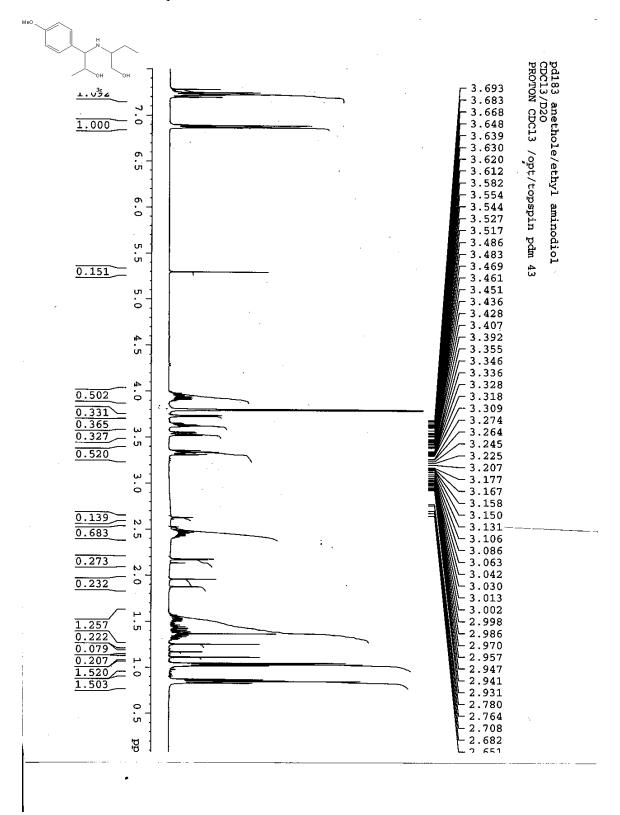
Pyrazine **4e**:

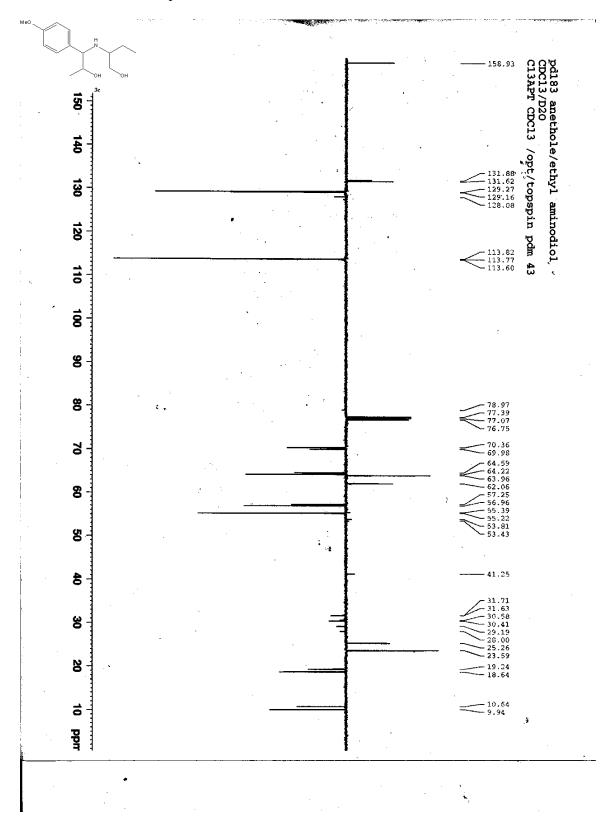

Amino diol **3e** (213 mg, 1.0 mmol) was suspended in 20 mL CH₂Cl₂, then DMSO was added dropwise until complete dissolution was observed (~5 drops). Meanwhile, 6.3 mL

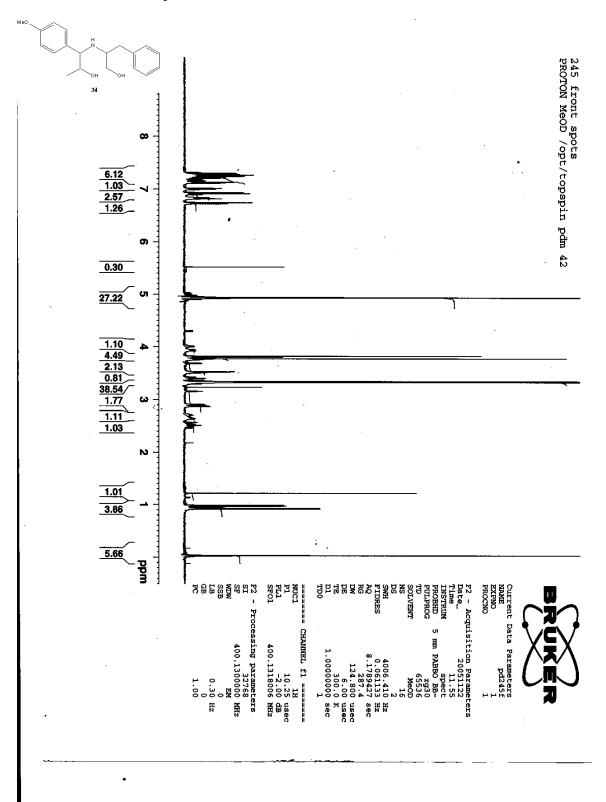

of a 1.63 M oxalyl chloride/ CH₂Cl₂ solution was cooled to -78 °C. DMSO (1.2 mL diluted to 10 mL with CH₂Cl₂) was added dropwise over 5 min with stirring. The solution of amino diol **3e** was then added over 5 min, and the reaction was kept at -78 °C for an additional 2 h. Triethylamine (5 mL) was then added, and after 15 min the reaction was allowed to come to room temperature (~2 h). The mixture was then partitioned between water and CH₂Cl₂. The organic extract was dried over Na₂SO₄ then decanted into another flask, to which was added 20 mL abs EtOH and NH2OH ⁺ HCl (78 mg, 1.12 mmol). The mixture then had 95 mL solvent distilled out of it by fractional distillation and was refluxed at 90 °C (bath temp) for an additional 2 h. The mixture was then concentrated and the residue was chromatographed to give pyrazine **4e** as a white solid (80 mg, 43% yield from amino diol 7). MP: 103-104 °C. Lit = 105-106 °C.¹² TLC: $R_f = 0.62$, (MTBE); ¹H NMR (CDCl₃) δ 1.90 (m, 2H), 2.85 (m, 2H); ¹³C NMR (CDCl₃) δ u 22.98, 32.02, 149.33; HRMS calcd for C₁₂H₁₆N₂: 188.131, obsd: 188.131 [M+].

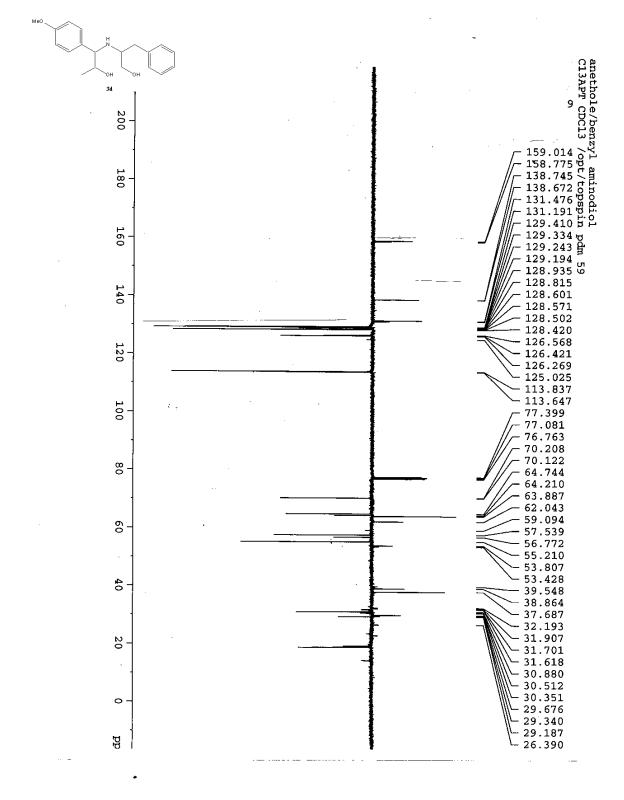

Amino Diols 3a: ¹H Spectrum

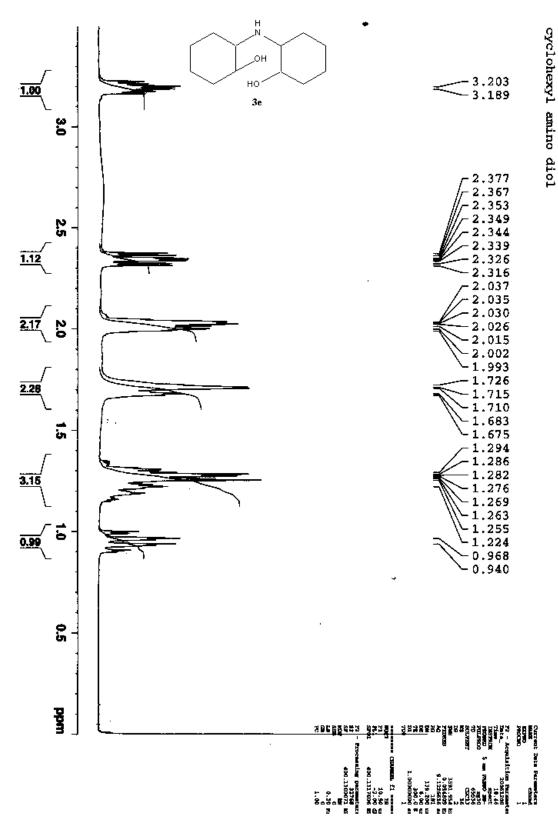

Amino Diols **3a**: ¹³C Spectrum

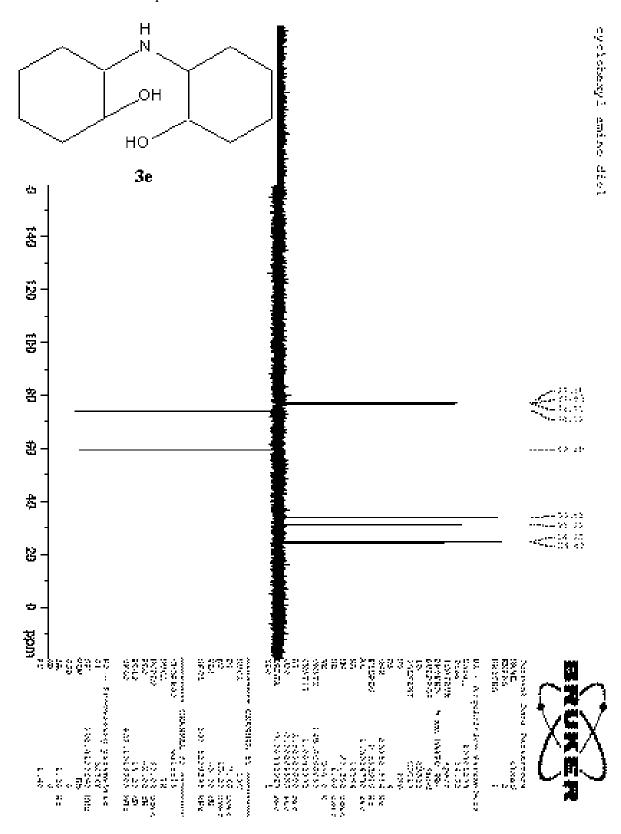


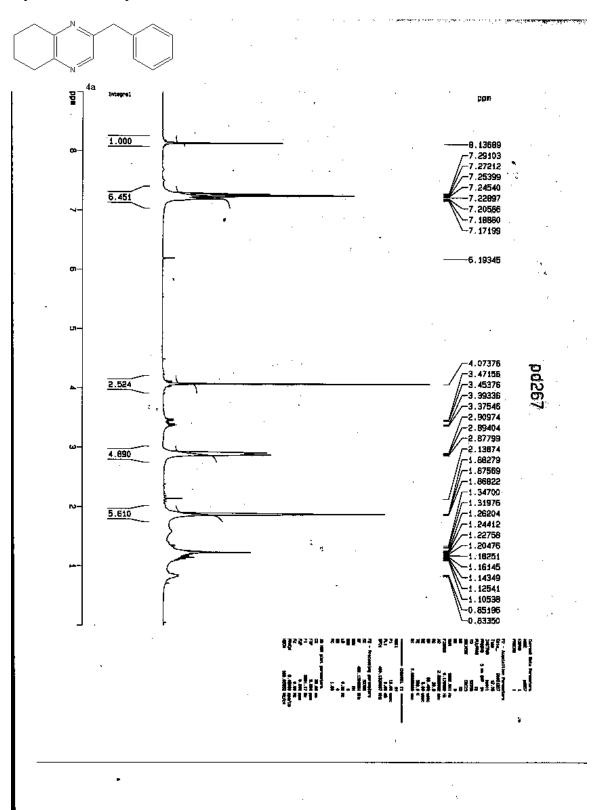

Amino Diols **3b**: ¹³C Spectrum



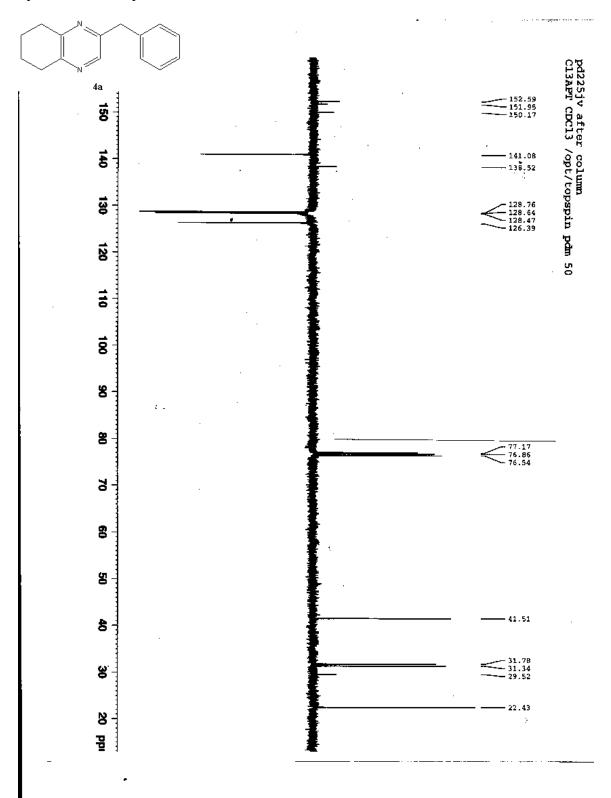

Amino Diols **3c**: ¹H Spectrum

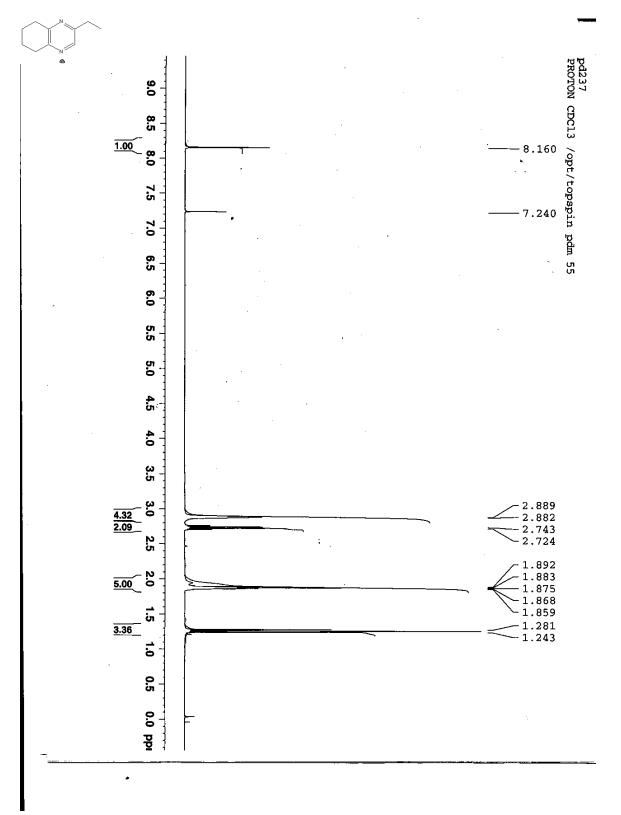

Amino Diols **3c**: ¹³C Spectrum

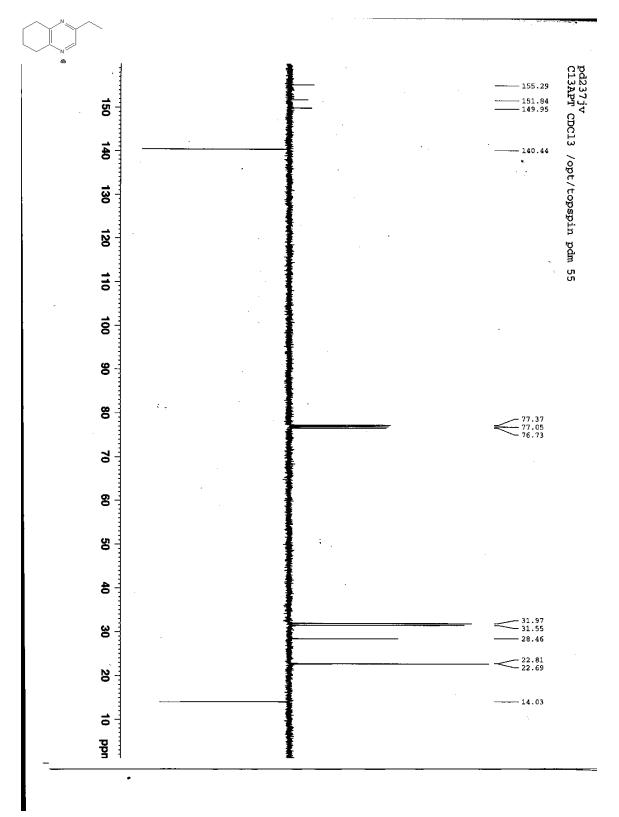


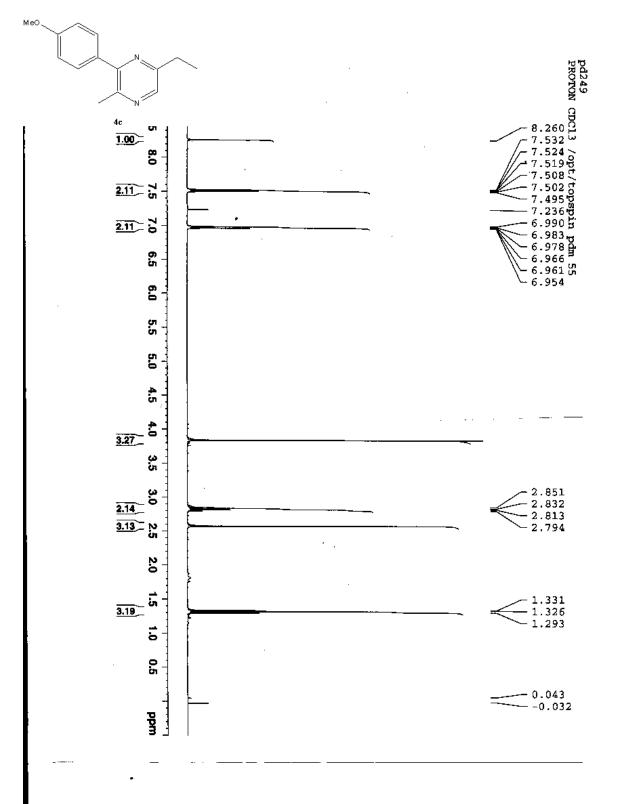


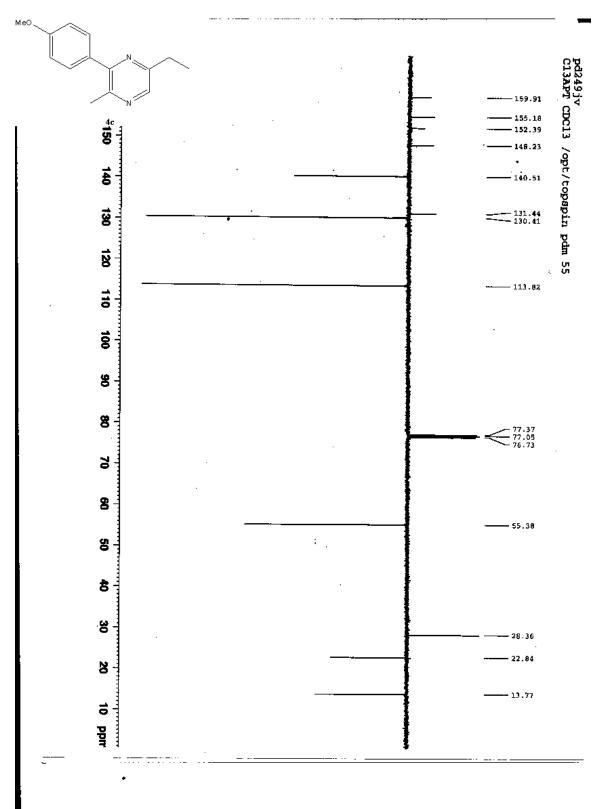
Amino Diol **3e**: ¹H Spectrum

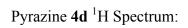


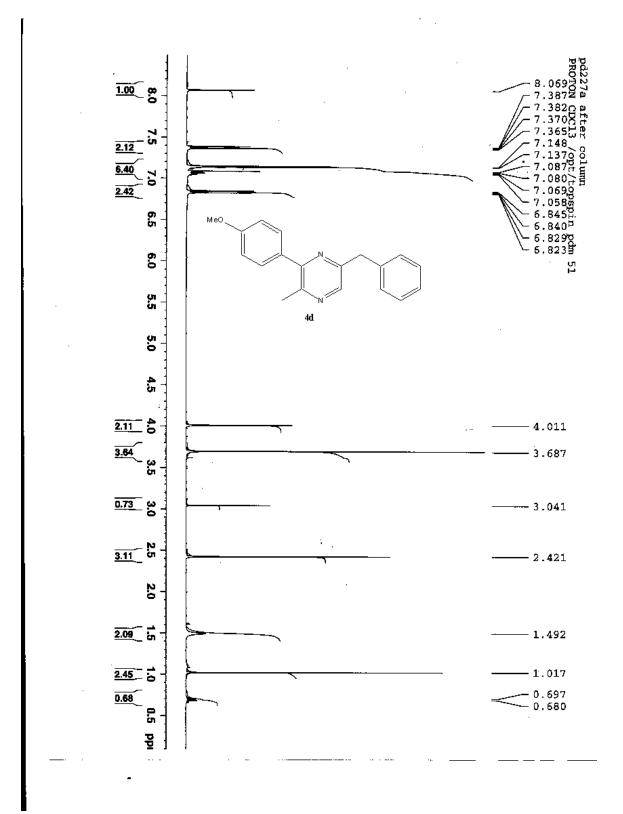

Pyrazine **4a** ¹H Spectrum:

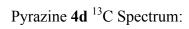

Pyrazine **4a** ¹³C Spectrum:

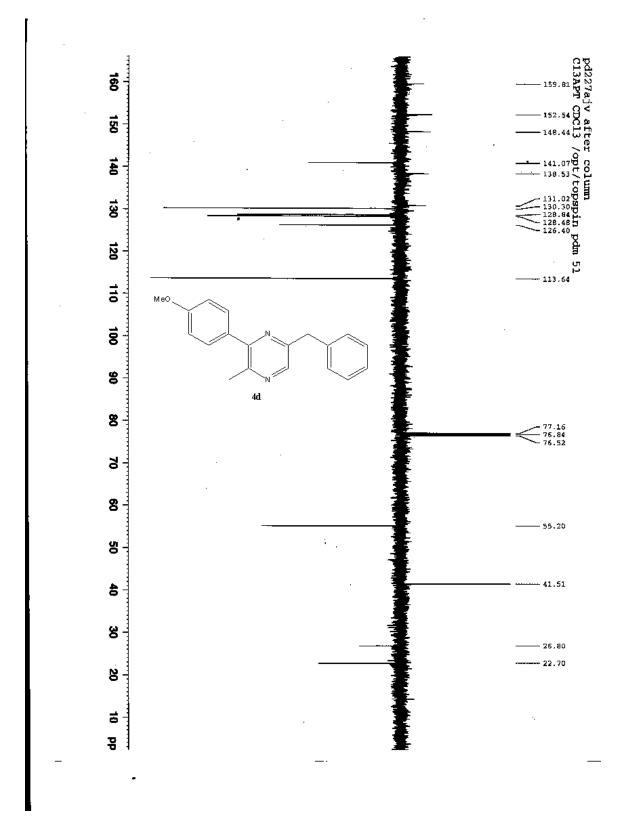

Pyrazine **4b** ¹H Spectrum:

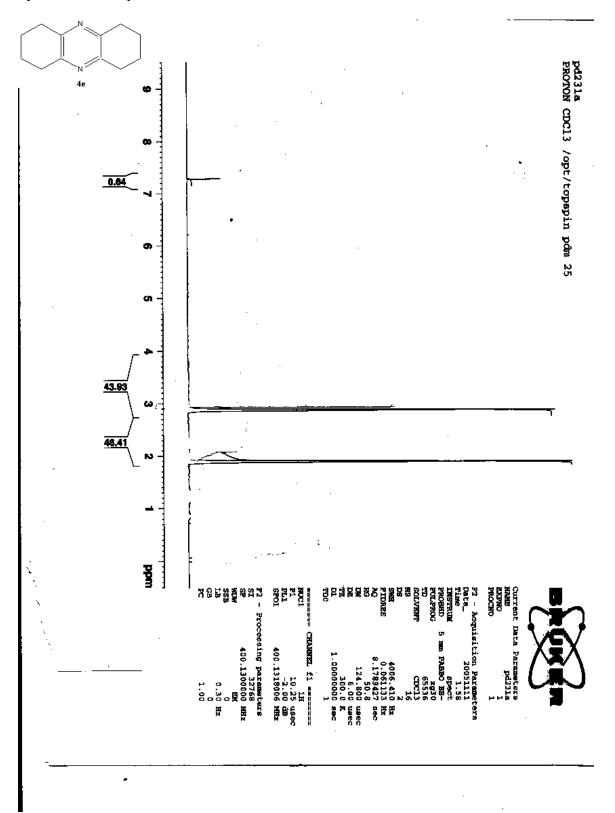

Pyrazine **4b** ¹³C Spectrum:

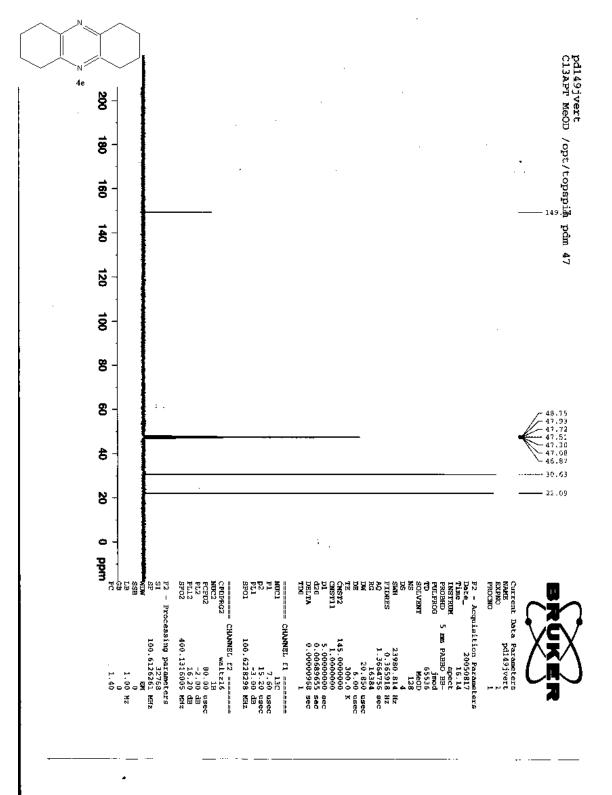



Pyrazine **4c** ¹H Spectrum:




Pyrazine **4c** ¹³C Spectrum:





Pyrazine **4e** ¹H Spectrum:

Pyrazine **4e** ¹³C Spectrum:

