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Data

The protein-protein interaction data used in the study were collected from five
public databases, IntAct (1), DIP (2), MINT (3), MIPS (4), and BioGrid (5). The high-
throughput physical interactions, identified by Y2H (Yeast Two-hybrid) and Affinity
Capture-MS, were filtered out for our analysis. The data includes 28,487 protein-
protein interactions and 9,032 proteins. The signaling pathway data used in the
analysis are the canonical signaling pathways in NCI-PID and BioCarta (6, 7). NCI-
PID contains 3,519 proteins, 8,472 interactions, and 254 signaling pathways.
BioCarta includes 2,394 proteins, 3,065 interactions, and 207 signaling pathways.
The genes related to genetic disorder of cancer in OMIM (8, 9) were automatically
processed by a Python script and followed by manually checking. The number of
cancer genes is 531, in which there are 47,53, and 8 genes for breast cancer,
prostate cancer, and promyelocytic leukemia. The drug target information was
obtained from Drugbank (10), TTD (11), and PharmGKB (12). The combined data
contain 9,951 drugs and 4,946 drug-targets. The drugs of Drugbank that belong to
‘Antineoplastic Agents’ category were identified as known anti-cancer drugs. About
20,000 FDA-approved application labels were downloaded from Drugs@FDA
(http://www.accessdata.fda.gov/scripts/cder/drugsatfda/) and DailyMed
(http://dailymed.nlm.nih.gov/dailymed/). The FDA-approved information was
automatically processed by a Python script and followed by manually checking. We
identified 18 FDA-approved breast cancer drugs, 6 FDA-approved prostate cancer
drugs, and 2 FDA-approved promyelocytic leukemia drugs. The clinical trial
information was queried from ClinicalTrial.gov website (http://clinicaltrials.gov/)
followed manually checking. There are 90,257 clinical trials in the ClinicalTrial.gov.
We found that 180, 221, and 11 drugs are undergoing different stages for breast
cancer, prostate cancer, and promyelocytic leukemia. The dose-response data of
raloxifene, tamoxifen, paclitaxel, and fulvestrant for MCF7 were derived from
Developmental Therapeutics Program (DTP) of NCI/NIH (13). All of the filtered data
for CSB-BFRM model can be found in the website of the tools, R2D2-CSB,
http://r2d2drug.org/Software/csb/csb.aspx .

Supplementary Table 1. Data sources for the definition of CSBs.
Al

Data types Data sources

Protein-protein interaction networks IntAct, DIP, MINT, MIPS, BioGrid

Canonical signaling Pathways NCI-PID, BioCarta

Cancer proteins* OMIM

INCI-PID: NCI PathwayInteractionDatabse; OMIM: Online Mendelian Inheritance in Man; *the proteins whose
coding genes are those in OMIM that have a close relationship with cancer genetic disorder.

Detection of network motifs

In the course of evolution, the protein modules were recombined into new patterns
by genetic mutations. Innovations in signaling processing are brought about by
unique combinations of existing building blocks, known as network motifs, rather
than by invention of entirely new protein modules (14-16).



The network motifs were detected from the protein-protein interaction data by the
FANMOD software (17). The detected network motifs were shown in
Supplementary Table 1. One could notice that the numbers of nodes in network
motifs are limited within 4. That is mainly due to the huge size of the data, which
causes the difficulty in detecting the network motifs with more than 4 nodes. The
time spent on searching the four-node motifs in the data is 120,812 seconds (about
34 hrs), and the estimated time for more node motifs (5 or 6) in the data is at least
10,000,000 (more than 100 days). The machine used in the detection is an 8-core
(Intel®, Xeon®, CPU X5355@2.66GHz) Cluster with 4.0 GB of RAM.

The network motifs used in our analyses are Triangle and Square. We chose them
by three criteria: (1) basic element interaction patterns; (2) relatively low
frequencies in the original network; (3) being highly clustered. 13278 and 31710
contains triangle or squares as their subgraphs. 4958 and 4382 have relatively high
frequencies. So they are excluded from our analyses. Triangle and Square satisfy all
of the three criteria, and their clustering properties are shown in next section.

Supplementary Table 2. The network motifs detected from protein networks

. Standard-
Network Adjacent Frequenc Mean-Fre Z- P
motifs Ip atrix | Subgraph [Or?ginal}/ [Random]q [Ranéc}i‘gm] score | value
Triangle | 238 o1 aN 1.4589% | 0.0032589% | 0.00011764 | 123.73 | 0
1001 7.6415e-
Square | 27030 | {4} 1 0.39532% | 0.22632% O 22116 | 0
0001
- 4958 | ooi1 Do 2.982% | 0.011686% | 0.00041668 | 71.287 | 0
1110
0011
0011 8.3246e- 3.6451e-
- 13278 | i X 0.2052% A 00 562.7 | 0
0111
1011 1.0043e- 1.3836e-
- 31710 | 100 X | 0.020203% 9035 AT 14602 | 0
0001
- 4382 | 0001 N 60.119% 57.33% 0.0020323 | 13.723 | 0
1110

The clustering property of the identified network motifs
We checked the clustering property of the identified triangles and squares. We

examined the clustering property by the parameters of protein-protein interaction
networks. Type [ subgraph was proposed to identify the local structures of
subgraphs by the global attributes of whole protein-protein interaction network
(18).If we denote N, (k)is the average number of (n,m) subgraphs with n nodes
and m interactions that pass by a node with degree &, then N, (k) ~ k"7~ "D,
where a and y are two exponents derived from the power law distributions of
correlation coefficients and degrees, i.e. P(k)~k™ and C(k)~ C,k™.If the

subgraph exponent satisfiesn - y — (m - n + 1)a > 0, the (n,m) subgraphs were called




as Type I subgraph. And we found that the triangles and squares in our analyses
belong to Type [ subgraph, see following table.

Subgraph exponent
Bridge Subgraph
y a n-y—-(m-n+la
Triangle A 1.836 | 0.7367 0.4273
Square = 1.836 | 0.7367 1.4273

This property of clustering facilitates the identified CSBs to better connect
signaling pathways with cancer-related genes or proteins.

Enrichment analysis on the CSBs

We randomly sample one protein set S, from the proteins in protein-protein

interaction network, which satisfies that ‘Sl‘ = ‘S‘ and ‘Sl N C‘ = ‘S NC

, and identify

another instance subset 11> of ITand each CSB}. (j=12,- T

) satisfies the
criteria in (1) that [CSB, NS, [>0, |CSB,NC|>0,and |CSB, | > |CSB, (s1 N c) .

Repeating the sample experiment for 10, 000 times, we can get a list of random
numbers of CSBs in the identified instance sets,

L= {‘HS"C } (2)
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Thus we can derive a random distribution f from (2). The corresponding P-value to
evaluate the enrichment of CSBs in the connection between Sand Cis computed at
| IT> €| by the ccdf (Complementary Cumulative Distribution Function) of £ .

E score

In Cmap 02, the connectivity score was proposed to measure the expression
difference between sample genes (up- or down- regulated genes) and reference
genes (all genes) based on a non-parameter test, i.e. Kolmogorov-Smirnov statistic
(K-S test) (19, 20). By evaluating the enrichment of a gene set in a treatment
instance, the connectivity score can reflect the treatment effect of the drug in the
instance. Similarly, we apply K-S test to define an E score to evaluate the effects of
drugs on an interested genes or proteins set in a treatment instance.

Data preprocessing

The microarray data produced by drug treatment experiments were preprocessed
and normalized by Partek software (21). In normalization configuration, we used
the ‘Partek Defaults’. Raw probe intensities were adjusted based on the number of G
and C bases in the probe sequence, the background was corrected by using method



from RMA (22), ‘No log’ was used for probes, and quantile normalization and mean
probeset summarization were adopted.

Fold change

To evaluate the expression change of a gene in a treatment instance, we considered
the fold-change of the gene. For each probe of the gene, the arithmetic mean of the
values from the six individual control scans was first derived. Then the fold change
for this probe is defined as the ratio of the corresponding treatment-to-control
values.

Definition of E score

E score is defined by the modified Kolmogorov-Smirnov test (K-S test) that is to test
whether two underlying one-dimensional probability distributions differ. For each
treatment instance i, the probe sets for the interested genes or proteins set and all
genes in the microarray chip are denoted by A and B respectively. The probes in A
and B were all sorted in ascending order according to their Fold-change. For a probe
jinB(j=12,---,b), we denoted its position in A as A(;)(the positions for A are
1,2,---,n), and then computed the following four values for up-regulated and down-
regulated genes in the interested genes or proteins:

£ m(iﬁ) 3)
£ AU 221) @)
£ g 4 -2U) (5)
£ AU 221) (6)

where UandD are the upper and lower quartile of the probes in B respectively. (3-
6) can determine whether the fold-change distributions of the interested gene set
(up- and down- regulated) differ from that of all genes by checking the difference
between the cumulative fraction functions for these two types of distributions.

The E scores for the up- and down- regulated genes of the interested gene set in
the instance i, E; and E;, were set as follows,

e _|E if £/ > E,
YUl-E IfE S E
£ - E: | 1fE>E

-E.  ifE >E

The E score for the instance i, i.e. E', was defined as E. - E!, if E| >0and E} <0, and
Ej,if E, >0, E} >0; -E.,if El <0, E} <0.
Multiple treatment instances were designed for drug k due to the different cell

lines, treated concentration and chips in Cmap 02. We denoted the instance set for
the drug as I,. The median value for {El,Ez,---, E""‘}Was set to the E score for the



drug, ie. E,. Set M =max(E,) and m=min(£, ) across all drugs, then E score £, was

defined as E /M where E, =0, or -E, /m where E, <0.

Implementation of CSB-BFRM

The cancer proteins for breast cancer, prostate cancer, and promyelocytic
leukemia were manually identified from the OMIM database (17, 24)
(Supplementary Table 4-6), and the expanded CSB proteins for the three cancer
types are listed in Supplementary Table 7-9. The inputs of CSB-BFRM, i.e., treatment
response matrices (X), for MCF7, PC3, and HL60 have 1,390, 1,215, and 1,099
columns (drugs) as shown in Supplementary Table 10-12. The number of

signatures, k| was identified by the evolution algorithm in BFRM automatically. The
numbers of the signatures for the three cancer types equal to 50, 46, and 40
respectively.

In the identification of targetable signatures, the target information is
indispensable. The targets of some drugs may not be included in the expanded CSB
proteins of one specific cancer type. Our strategy is expanding them to the nearest
CSB proteins using the shortest protein-protein interaction paths (in other words,
using the smallest number of proteins linked head to tail). We used the expanded

proteins to address the targetable signatures from the weight matrix A . Still some
other drugs do not have any known drug targets. For each of these drugs, our
strategy is taking a randomized number of CSB proteins as its targets or off-targets.
We repeated the randomized process for a thousand times to reduce computational
bias.

Applying CSB-BFRM on the BFRM outputs, weight matrixA and score matrix A,
we identified one thousand repositioning profiles for the repositioned drugs after
repeating the randomized process for 1,000 times for each cancer type. To further
define the repositioning score, we applied a supervised regression model, Support
Vector Regression (SVR), on the repositioning profiles. We used FDA-approval and
publicly available clinical trial information as the prior knowledge and performed
the regression between the identified repositioning profiles and the prior
knowledge indicating which drugs are FDA-approved or under clinical trials. The
information for FDA approved drugs and clinical trial drugs for breast cancer,
prostate cancer, and promyelocytic leukemia, are shown in Supplementary Table 13.



Supplementary Tables 3-18 are included in Supplementary Data.



Supplementary Figure 1.
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(A) Without facilitated by CSBs, most cancer proteins are isolated from the signaling
pathways. The numbers of cancer proteins mapped to signaling pathways are less
than are less than 10. More than half of signaling pathways don’t involve in any
cancer proteins. (B) Facilitated by CSBs, significantly more cancer proteins are
involved in the signaling pathways mapping (P < 10-19, Mann-Whitney U test). Most
signaling pathways are expanded to cancer proteins (only less than 40 signaling
pathways cannot be linked with cancer proteins).



Supplementary Figure 2.
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Comparison between original fold-changes and the recognized OTEs

Every boxplot describes the fold-changes or OTEs of the drug’s off-targets in the cell
cycle G1/S checkpoint and P53 signaling pathways. The OTEs are recognized by the
BFRM method, and they are the factorized values for targetable signatures. The data
for original fold-changes are in the range of [0.4, 1.6] while those for OTEs are
between -0.01 and 0.01. The OTEs are better to characterize the drug effects. Nearly
all of the original fold-changes for raloxifene (0.1uM ) and tamoxifene (1uM ) are
higher than 1. The response characterized by the fold-change cannot indicate the
difference between the positive and negative effects on the molecules in cell cycle
G1/S checkpoints and P53 signaling pathways.
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