1 Smith et al., Long-Duration Space Flight and Bed Rest Effects on Testosterone...

LC-MS/MS method. An Oasis HLB 96-well µElution SPE (Waters Corporation, Milford, MA)

plate was conditioned with 0.2 mL methanol followed by 0.2 mL deionized water. For

23

4

5

Supplemental Material

6 determination of total testosterone, 20 µL of internal standard (stable isotope-labeled testosterone-7 d3, 25 ng/mL in 50% methanol-water solution) was added, along with 100 μ L of 5% H₃PO₄ water 8 solution and 500 μ L deionized water, to the 100 μ L calibrator, control, and serum samples in a 9 1.5-mL microcentrifuge vial with cap. The samples were vortexed and loaded onto the HLB SPE 10 plate. For determination of bioavailable testosterone, $100 \,\mu\text{L}$ cold (4–8°C) saturated ammonium 11 sulfate water solution was added to 100 μ L calibrator, control, and serum samples. The samples 12 were vortexed and centrifuged for 5 min at 13,500 RPM (18,779 x g). The supernatant was 13 transferred to another 1.5-mL microcentrifuge vial and the following were added: 20 µL internal

standard T-d3, 20 μ L 5% H₃PO₄ and 500 μ L deionized water. The samples were vortexed and

15 loaded onto the HLB SPE plate. The SPE plates were rinsed with 0.2 mL 5% NH_4OH water

16 solution followed by 0.2 mL 50% methanol-water solution . The samples were eluted with 0.1

17 mL 100% methanol to a 0.8-mL 96-well sample collection plate and the plate was covered for

18 LC-MS/MS analysis. Ten microliters of the extracted sample was injected into the Ultra

19 Performance (UP) LC-MS/MS system.

20

LC-MS/MS Conditions. The chromatographic separation was performed using a Waters Acquity
UPLC system equipped with an autosampler, a binary pump manager, and a Waters Acquity
UPLC BEHC18 analytical column (50 x 2.1 mm, 1.7-µm particle size) (Waters Corporation,
Milford, MA). Mobile Phase A was deionized water (0.05% formic acid) and mobile phase B was
acetonitrile (0.05% formic acid). The following gradient elution procedure with a flow rate of 2.5
mL/min was used for each injection: 0 min of 50% B and held for 0.25 min; a linear increase to

27	80% B at 0.75 min and then up to 100% B in 0.25 min, held for 0.5 min; and then a linear return		
28	to the initial state. The total run time was 2 min. Injection volume was 10 $\mu L.$ Sample chamber		
29	temperature was 4°C and column chamber temperature was 30°C during the analysis. Mass		
30	detection and quantification of the total and bioavailable testosterone was carried out with a		
31	Quattro Micro TM API mass detector using an electrospray interface (Waters). Positive ions were		
32	monitored in the multiple reaction modes (MRM). The respective parent/product ion pair was		
33	289.3/109.0 m/z for testosterone and 292.3/109.0 m/z for testosterone-d3. The following		
34	parameters for the ion source were used: capillary voltage 3.5 kV, cone 30 V, and collision		
35	energy 25 eV. Dwell time was 0.3 sec, source temperature was 120°C, and desolvation		
36	temperature was 450°C. Argon was used as the collision gas. The whole UPLC-MS/MS system		
37	was controlled by MassLynx 4.1 software (Waters).		
38			
39	Estimation of SHBG and Free Testosterone. Free testosterone and SHBG were calculated based		
40	on a mathematical model developed by Vermeulen and colleagues (1). We developed a method		
41	from this model to estimate SHBG and FT using concentrations of TT and BT that can be		
42	determined by the LC-MS/MS, and an average concentration of albumin in human serum. The		
43	equation of testosterone in serum is described as:		
	Total Testosterone = Free T + Alb-bound T + SHBG-bound T		
	[TT] = [FT] + [AT] + [PT]		

44 $[AT]/[FT] = constant = K_A[Alb.] = K_A (43g/L)/69000 = 6.23188 \times 10^{-4} K_A$

45 Where 69000 = molecular weight of albumin, and the 43 g/L is average albumin concentration in

- 46 human serum.
- 47 $[AT] = 6.23188 \times 10^{-4} K_A [FT],$
- 48 $[BT] = [FT] + [AT] = (1 + 6.23188 \times 10^{-4} K_A) [FT]$

49 Thus FT concentration can be calculated as:

50 [FT] = [BT]/
$$(1 + 6.23188 \times 10^{-4} K_A)$$
 (1)

51 If [P] = free SHBG, and [PT] = testosterone bound SHBG, we can get an equation as

52
$$[FT] + [P] \leftrightarrow [PT] \text{ or } [P] = [PT]/([FT] K_S)$$

53
$$[SHBG] = [P] + [PT] = [PT]/([FT] [K_S]) + [PT] = [PT] \{1/([FT] K_S) + 1\}$$

- 54 Where [PT] = [TT] [BT], and use equation (1) $[FT] = [BT]/(1 + 6.23188 \times 10^4 K_A)$
- 55 Thus SHBG concentration can be calculated as:

57

We calculated SHBG concentrations in 6 serum samples in the College of American Pathologists (CAP) 2010 inter-laboratory survey using concentrations of TT and BT that determined by LC-MS/MS, and optimal association constants $K_s = 2.5 \times 10^9$ L/mol and $K_A = 2.45 \times 10^4$ L/mol (2, 3). Compared to the mean values of SHBG concentrations in the CAP report, our estimated SHBG results showed an average 10.3% deviation. Four of the 6 samples had deviations <10%.

63

64 Accuracy and Precision of the LC-MS/MS method. Three levels (75, 300, and 1500 ng/dL) of

65 controls of testosterone were used for the evaluation of intra-assay and inter-assay % CVs. The

66 controls were prepared with spiking testosterone in a 1% BSA water solution. The intra-assay

68 10.9%, respectively. The linear range of the calibration curve for testosterone using this method

69 was 20–5000 ng/dL (0.69–173.35 nmol/L). The lower limit of quantification (LLOQ) was 20

70	ng/dL ((0.69 nmol/L). We also analyzed 6 serum samples using mass spectrometry in a CAP 2010	
71	inter-laboratory survey. Compared to the values of total testosterone in the CAP report ($n=6$), our		
72	study results showed an average 10.9% deviation. Four of the 6 samples had deviations <10%.		
73 74	DFFF	DENCES	
74 75	NEFE	NEINCES	
76 77 78	1.	Vermeulen A, Verdonck L, Kaufman JM 1999 A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84:3666-3672	
79 80 81 82 83	2.	Giton F, Urien S, Born C, Tichet J, Guechot J, Callebert J, Bronsard F, Raynaud JP, Fiet J 2007 Determination of bioavailable testosterone [non sex hormone binding globulin (SHBG)-bound testosterone] in a population of healthy French men: influence of androstenediol on testosterone binding to SHBG. Clin Chem 53:2160-2168	
84 85 86 87 88	3.	de Ronde W, van der Schouw YT, Pols HA, Gooren LJ, Muller M, Grobbee DE, de Jong FH 2006 Calculation of bioavailable and free testosterone in men: a comparison of 5 published algorithms. Clin Chem 52:1777-1784	