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I) Supplementary Figures S1-3:

Figure S1. ICDK inhibitors protect against cAMP-induced apoptosis while GSK3
inhibitors protect against DNR-induced apoptosis.
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IPCwr cells were exposed to SCPT-cAMP (0.2 mM) or DNR (0.4 uM) for 6h in the
absence or presence of various concentrations of active site directed CDK and GSK3
inhibitors. Panel a shows the correlation between the potency of each compound to
inhibit cAMP-induced apoptosis and CDKS5, based on the ICsy data of Table S6. Panel
b shows a correlation between the potency of each compound to inhibit DNR-induced
apoptosis and GSK3, based on the ICsy data of Table S6. Panel ¢ shows lack of
correlation. The figure shows plots of the inhibitor symbols in intense red signify
strong CDKS5/GSK3 specificity and in intense blue strong GSK3B/CDKS5 specificity.
A positive correlation exists between CDKS inhibition and protection against 8CPT-
cAMP (a) and between GSK38 inhibition and protection against DNR (b). No
correlation exists between between cAMP apoptosis protection and GSK38 inhibition
(c¢), or DNR apoptosis inhibition and CDKS5 inhibition (d). The anti-apoptotic effect
of GSK3 inhibitors stands in contrast to the role of this kinase as an oncogene in
MLL'



Figure S2. Truncated p23 HSP90 cochaperone facilitates DNR-induced HEK293T
cell apoptosis
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HEK-293T cells were co-transfected with GFP and pRKSMCS-FLAG (empty
VCCtOI‘), pRKSMCS-p23WT-FLAG, pRKSMCS-p23D145/145A-FLAG, or pRKSMCS-
p231.142-FLAG (A-p23-FLAGQG), using the calcium phosphate method. 36 hours
thereafter the cells were incubated for 7 hours with DNR (9 uM) and GFP-positive
cells (routinely > 80%) scored for apoptosis (upper panel) by interference contrast
microscopy” or lyzed and analyzed for p23 expression by immune-blotting and
probing with anti-FLAG (middle panel) or anti-p23 (lower panel) antibody. Note that
the deletion of the 18 C-terminal residues of p23 in A-p23-FLAG leads to a visible
shift of gel migration. The horizontal arrow points to the endogenous p23. The error
bars represent SEM (n=5). The p-values were calculated by the Student t-test.



Figure S3. IPC cells overexpressing the CREB antagonist ICER have intact DNR-
induced IPC cell apoptosis that is stimulated further by cAMP
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The figure shows similar apoptosis induction in IPCw (white columns) and IPCjcgr
cells treated for 6h with the concentrations of DNR indicated (grey columns). The
death was scored based on chromatin condensation in nuclei of cells after staining
with Hoechst33342. The death in the untreated cells is subtracted. The data represent
mean = SEM (n = 3-9). The death inducing synergy between cAMP analog and DNR
was diminished, but not abolished by RCV (not shown), suggesting that it was due
also to RCV-resistant cAMP-induced processes.



II) Supplementary Tables S1-3:

Table S1. N°-Bnz-8-Pip-cAMP has superior ability to discriminate cAMP binding
site Al of PKA-I from those (All, BII) of PKA-II

Compound Aff. Site Al Aff. Site Al Aff. Site BII Discr. |Discr.
(KqcA/Kqanal.) |(KacA/Kganal) |(KacA/Kqanal) |AI/AIl |AI/BII
Cyclic AMP (cAMP) |[1.0 1.0 1.0 1.0 1.0
N¢-Bnz-8-Pip-cAMP (1.7 0.0011 0.065 1550 26
Né-Bnz-cAMP 0.5 3.8 0.0037 1/7.6 (135
8-Pip-cAMP 1.2 0.037 2.4 32 2
8-CPT-cAMP 3.9 0.054 19 72 1/4.9
N6-MB-cAMP2) 3.9 0.74 0.071 5.3 55
Né6-MBC-cAMP 0.50 13 0.066 1/26 7.6

The table shows the affinity, relative to cAMP, of the new analog N°-Bnz-8-Pip-

cAMP (bold) synthesized for the present study to achieve specificity for site Al of
PKA-I relative to site AIl and BII of PKA-II. It shows also data for other analogs
previously used to preferentially occupy site Al, as well as for 6-MBC-cAMP, used to
selectively occupy site AIl of PKA-II. The rel. affinity of N°-Bnz-8-Pip-cAMP for
site BI of PKA-I was 0.018, against 0.26 for N°®-Bnz-cAMP, 0.022 for 8-Pip-cAMP,
1.7 for 8-CPT-cAMP, 0.78 for N>-MB-cAMP, and 0.086 for N’-MBC-cAMP. N°-
Bnz-8-Pip-cAMP is the most site AI/BI selective (1550x) and AI/BI selective (94x)
compound on record. The synthesis of the new analog and determination of the
affinity of the various analogs for the individual sites of PKA 1is described in Suppl.

Sect. IV.
9 Data from.’

Table S2. The 2-Cl-substituted 8-AHA-cAMP has superior site BI specificity.

Compound Aff. Site BI Aff. Site Al Aff. Site BII Discr. |Discr.
(KacA/Kqanal.) |(KqcA/Kqanal) |(KqacA/Kqanal.) BI/AIl |BI/BII
Cyclic AMP (cAMP) [1.0 1.0 1.0 1.0 1.0
2-Cl-8-AHA-cAMP (3.9 0.0012 0.50 3250 (7.8
8-AHA-cAMP 3.6 0.028 0.31 128 11.6
8-NH-CH3-cAMP 1.4 0.026 1.6 54 1/1.1
8-CPT-cAMP 1.7 0.054 19 31 1/11
Sp-5,6-DCl-cBIMPS (0.13 0.034 14 3.8 1/11

The table shows the affinity, relative to cAMP, of the new analog 2-CI-8-AHA-cAMP

for site BI of PKA-I, and site AIl and BII of PKA-II. Its rel. affinity for site Al of

PKA-I was 0.0052, against 0.73 for 8-AHA-cAMP, 0.09 for 8-NH-CH3-cAMP, 3.9
for 8-CPT-cAMP, and 0.22 for Sp-5,6-DCIl-cBIMPS. 2-Cl-8-AHA-cAMP has 3
orders of magnitude discriminatory power for site BI/AII (3250 x) and BI/AI (750x).
The other compounds listed have been used in previous studies of preferential PKA
isozyme activation. For further details see the legend to table S1.



Table S3. The expected synergy for PKA-I and PKA-II activation by selected cAMP
analog pairs

cAMP analog pair (x +y) [Predicted synergy PKA-I |Predicted synergy PKA-II

VAFFANBE+BE) 4 [ (AIT* + AID)(BIT* + BIPY)
VIAI)(BI*) + \/(AI%)(BI") VATT)(BIT*) + \/(AII¥)(BII¥)

Né-Bnz-8-Pip-cAMP

+ 2-Cl-8-AHA-cAMP 7.2 0.09
Né-Bnz-8-Pip-cAMP

+ Sp-5,6-DCl-cBIMPS 2.6 0.14
Né-Bnz-8-Pip-cAMP

+ N6-MB-cAMP 0.06 0.34
6-MBA-cAMP 029 -

+ Sp-5,6-DCl-cBIMPS

The Table shows how much more efficiently PKA-I or PKA-II can be activated by a
mixture of two cAMP analogs (X,y) than expected from simple additive actions. The
formulas are based on the analog affinity relative to cAMP, as given in Tables S1,2,
for the cAMP binding sites of PKA-I (abbreviated AI*, AI" and BI*,BI’) and PKA-II
(AIT*, AIF and BIIY, BI"). The upper term of the formulas, [(A*+ AY)x(B*+ BY)]’?,
represent the expected potency of the x + y mixture, while the lower term, (A*x B¥)*?
+ (AY x BY)"’, shows the potency expected from simple additivity. If there is no
synergy the ratio between these terms is 1 (see” for further details), which becomes 0
after subtraction of 1, as done here. The combination of the new analogs N°-Bnz-8-
Pip-cAMP and 2-CI-8-AHA-cAMP (first data row) produces stronger PKA-I
synergism than any previously available analog combination®, and is completely
devoid of PKA-II synergy. When N°-Bnz-8-Pip-cAMP is combined with Sp-5,6-DCI-
cBIMPS (second row) a moderate PKA-I and no PKA-II synergy is expected, and
when combined with N®-MB-cAMP (row 3) almost no synergy is expected. The
combination 6-MBA-cAMP + Sp-5,6-DCI-cBIMPS (row 4) produces strong PKA-II

synergy.



II) Supplementary Tables S 6, 7:

Table S6. IPC cell death induced by cAMP or daunorubicin is antagonized by
inhibitors of cyclin-dependent kinases (CDKS5) and glycogen synthase kinase 3

(GSK3p).

Compound
(code)
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K447
K15
K437
K310
K146
K30
K25
K114
K51
K81
K82
K402
K49
K319
K84
K26
K129
K50
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K53
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K83
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K85
K242
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GSK3
ICso (UM)

130
100
13
100
5.5
0.39
0.35

0.052
1.4
0.01
0.1
0.8
0.075
0.13
0.35
0.013
0.004
0.018
0.13
0.03
3.4
0.023
0.08
0.008
0.13

0.13
0.015
0.063
0.018
0.025
0.008

CDK5/GSK3
preference

810
670
170
33

1.7
0.98
0.88
0.33
0.29
0.28
0.23
0.20
0.20
0.17
0.13
0.12
0.11
0.10
0.086
0.072
0.050
0.034
0.027
0.027
0.027
0.021
0.014
0.013
0.012
0.0063
0.0043
0.0042
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The table shows the inhibitory potency (ICso) against cyclin-dependent protein
kinase 5 (CDK5) and glycogen synthase kinase 3beta (GSK3) of 33 compounds,
ordered according to decreasing CDK5/GSK3 preference (IC50GSK3/IC50CDK5).
The ICso to protect against IPC cell apoptosis induced by incubation for 6h with
0.4 uM daunorubicin (DNR) is shown for all compounds, and to protect against
200 uM 8-CPT-cAMP (cAMP-induced apoptosis) for 18 compounds. Details are
given in the Materials and Methods section. The sources of the 29 K-x protein
kinase inhibitors, R (roscovitine), O (olomoucine), B (butyrolactone), and P
(purvalanol) are given in Suppl. Sect. IV. The ICs¢ values for GSK3 and CDK5 are
taken from the sources indicated in the table. The compounds shown in red have
more than 30-fold selectivity for CDK5 as compared to GSK3. The ones in dark
blue have > 100-fold selectivity for GSK3 as compared to CDKS5, those in light
blue have 10 - 100 x preference.



Table S7a. The oligoDNA sequences of primers used for gqRT-PCR or RT-PCR based
cloning of Bim variants

Gene Forward primer Reverse primer

18S rRNA cggctaccacatccaaggaa cagctggaattaccgegget

SDHA catgccagggaagattacaa gcacagtcagcctcattcaa

Bim (all isoforms) |ggccatggccaagcaaccttctga ccagatcttcagtgccttctccagacca
BimEL gtcctccagtgggtatttctce attgaactcgtctccgatee

BimL cagacagaatcgcaagacag attgaactcgtctccgatee

BimS gaatcgcaagcttccataagg attgaactcgtctccgatee
n-BimEL gtcetecagtgggtatttcte tgagttgaccataccgagac
Nn-BimL cagacagaatcgcaagacag tgagttgaccataccgagac
1n-BimS gaatcgcaagcttccataagg tgagttgaccataccgagac

Panel a shows the sequences are in 5° — 3’ sequence. The primers for Bim (all
isoforms) are from the (common) translational start and stop regions. The others from
variant-specific regions. See Figure 3 for further description of the Bim isoforms.

Table S7b. The oligoDNA sequences used in shRNAI directed against (pan)-Bim
mRNA.

Biml fwd GATCTCCgagtgtgacagagaaggtggacaattgCTGGTCcaattgtccaccttctctgtcacacte

Biml rev |AAAAgagtgtgacagagaaggtggacaattgGACCAGceaattgtccaccttetetgtcacactcGGA

Bim2 fwd GATCTCCgtaaattctgagtgtgacagagaaggtCTGGTCaccttctctgtcacactcagaatttac

Bim2 rev |AAAAgtaaattctgagtgtgacagagaaggtGACCAGaccttctctgtcacactcagaatttacGGA

Luc fwd (GATCTCCgattatgtccggttatgtaaacaatccggCTGGTCecggattgtttacataaccggacataate

Lucrev  |/AAAA gattatgtccggttatgtaaacaatccggGACCA GeceggattgtttacataaccggacataatcGGA

Panel b shows the sequences of the two hairpin oligo DNA’s used to knock down Bim
mRNA in the IPC cells. The sequences directed against luciferase mRNA, used as
non-target controls, are also shown.



IV) Supplementary Materials and Methods
Source and synthesis of cAMP analogs

The following cAMP analogs: 8-para-Chloro-Phenylthio-cAMP (8-CPT-cAMP), 8-
para-Chloro-Phenylthio-2’-Methyl-cAMP (8-CPT-2’-Me-cAMP), 8-Pieridino-cAMP
(8-Pip-cAMP), 8-Methylamino-cAMP (8-NHCH3-cAMP), 8-Aminohexylamino-
cAMP (8-AHA-cAMP), N°-Monobutyryl-cAMP (N°-MB-cAMP), N°-Mono-tert-
Butylcarbamoyl-cAMP (N°-MBC-cAMP), N°-Benzoyl-cAMP (N°-Bnz-cAMP), and
Sp-5,6-DCl-cBIMPS were supplied by BioLog Life Science Institute, Bremen,
Germany (www.biolog.de). The new analog 2-Chloro-8-Aminohexylamino-cAMP (2-
CI-8-AHA-cAMP) with improved specificity for cAMP binding site BI of PKA-I was
synthesized from 2-Chloroadenosine by steps described in'>'”. The new analog N°-
Benzoyl-8-Piperidiono-cAMP (N°-Bnz-8-Pip-cAMP) with improved specificity for
site Al of PKA-I was synthesized from 8-Br-cAMP using procedures described in
718 The new analogs were > 99% pure as judged by analytical HPLC
chromatography on two different resins.

Determination of the affinity of cAMP analogs to the cAMP binding sites of PKA-I
and PKA-I1

In order for PKA to be activated both of its two cAMP binding sites (A,B) must be
occupied by cAMP or another activatory cAMP analog.'” The binding sites of two
PKA isozymes PKA-I and PKA-II differ only subtly, and selective activation of one
isozyme demands therefore a pair of cAMP analogs, which when appropriately
combined can achieve selective activation of PKA-I or PKA-II. In order to achieve
selective activation of PKA-I one analog with preference for site Al of PKA-I must be
combined with one preferring site Bl of PKA-I. To achieve selective activation of

PKA-II one analog must prefer site AIl and the other one site BII (see also * and
Table S3).

The affinity of each analog for site Al and BI of PKA-I was determined using the
human recombinant regulatory, cAMP-binding subunit (hRla) of PKA-I. For PKA-II
the hRIla subunit was used. The method is based on the ability of analogs to displace
[BH]cAMP from site A and B under equilibrium binding conditions, and has been
thoroughly validated and described.?? The data are given as the average of at
least three determinations with a range of + 15% of the mean. The results
obtained with previously available cAMP analogs (Tables S1, S2) were similar to
those previously found for rabbit RI subunit and bovine RII subunit?! and murine
RI subunit.?? This fact and the near identical amino acid sequences of each cAMP
binding site of mammalian RI subunits suggest that the present data are relevant
for the rat R subunit expressed in the presently studied rat-derived IPC cells.
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Source and synthesis of inhibitors of cyclin-dependent protein kinases and glycogen
synthase kinase 3

The CDK inhibitor roscovitine (RCV) was from Sigma chem. Co. (St.Louis, MO,
USA). Butyrolactone and olomoucine were from Calbiochem, and purvalanol from
Alexis.

The 29 CDK/GSK3 targeting inhibitors labeled Kn (Table S6) were synthesized and
provided by Dr. C. Kunick, Institut fiir Medizinische und Pharmazeutische Chemie,
Technische Universitit Braunschweig, Beethovenstra3e 55, D-38106 Braunscheig,
Germany. Synthesis, purification, structure identification, physicochemical
characterization, and purity evaluation were carried out according to the published
methods described in the references listed in Table S6.

Chart S1: Structures of dual CDK/GSK3 inhibitors labeled Kn listed in Table S6
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Source of cell lines used

The HEK293T cells were obtained from ATCC (Rockville, MD). The Phoenix cells
used to produce retrovirus were a kind gift from J. Lorens. The IPC-81 cell line, also
denoted IPC or IPCwr in this work, was established by M. Lanotte.” It is derived
from the transplantable rat BNML leukemia cell model, which is considered one of
the most reliable intact cell animal models for the prediction of anti-leukemic drug
efficiency in human AML patients.***

The IPCgcr cell line was derived from IPCywr by stable retroviral transfection26, and
due to its resistance to cAMP it allowed the detection of a cAMP-induced
differentiation pathway hidden by the rapid death otherwise induced by cAMP.?® The
IPCpcr2 line was used to study cAMP-induced gene regulation un-confounded by
apoptosis and judge the ability of Bcl2 to counteract death induced by exogenously
introduced Bim-L.

The IPCycgr cell line was derived from the IPCyreells®’ to judge the importance of
CRE-dependent transcription factors (CREB, CREM, ATF family) in cAMP-
dependent death and differentiation. ICER is a naturally occurring alternative splice
form of the larger CREM protein, which is closely related to CREB.?* Since ICER
contains only the CRE binding domain of CREM (see Fig. 7 for a simplified diagram)
it will bind to the cAMP-responsive element (CRE) of DNA without modifying
transcription, and thereby act as a competitive inhibitor towards CREB and CREM.
The IPCcer cells lack both the differentiation and the apoptotic response to cAMP.?’
In the present study they were used primarily to judge the CRE-dependence of cAMP-
induced IPC cell gene regulation. Since CREB has become established as a potential
AML oncogene and ICER as a AML tumor supressor™ > we used the IPCycgg cells
also to judge whether ICER expression facilitated IPC death induced by the first line
anthracycline daunorubicin (DNR) alone and together with cAMP.

In addition to study the abovementioned IPC cell lines we created IPC cells with

stably downregulated Ca subunit of PKA, stably downregulated Bim, as well as cells
overexpressing BimL. Supplementary details of their generation are given below.
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Generation of PKA Ca subunit depleted IPC cells and determination of their PKA
activity, and calculation of their PKA subunit concentrations

The C subunits are common for PKA-I and PKA-II. The major C subunit isoform is
Ca. To generate functional RNA1 hairpins against the Ca subunit of PKA, an
expression library based approach described in>® was used. The method utilizes
restriction enzyme digested cDNA as a template for short hairpin coding DNA to
incorporate into expression vectors. The rat PKA Ca subunit cDNA from the plasmid
IMAGE:7314651, was used as a source for potential target. It was digested and the
fragment was treated according to.* The hairpin RNAi coding DNA fragments,
kindly provided by Dr. Jim Lorens, were incorporated into two different retroviral
vectors designed for RNAi- and GFP expression.

Retroviruses were generated and used to infect IPC cells as described in material and
methods section. The infected IPC cells were cultured for two days and sorted for
GFP-positive cells using fluorescence-activated flow cytometry. The GFP positive
cells were treated with 65uM 8CPT-cAMP for 48 hours to select for cAMP resistant
cells. The cells surviving the selection were sub-cloned and expanded for analysis of
kinase activity and testing of susceptibility to cAMP-induced apoptosis.

The PKA activity (residing in the catalytic C subunit of PKA) was determined in
extract of the IPC cells as described previously.***>

The content of PKA subunits in the [IPCyr cells is higher than in average tissues,
where it is about 0.5 — I pM C subunit.”® We found IPC cells to contain 8.2 pmol RI
subunit / mg cell protein, 2.9 pmol RII / mg protein, and 10 pmol C subunit / mg
protein. Taking the protein content to be 15% and the PKA subunits to be distributed
in 70% of the cell volume these figures translate to effective cellular concentrations of
1.76 uM RI, 0.62 uM RIL, and 2.1 uM C subunit.” If the PKA is 25% dissociated in
the resting state®” about 0.52 pM C subunit will be dissociated and active under basal
conditions. Upon microinjection of protein solutions about 50-fold dilution occurs in
the cell cytosol**The injection of C subunit from a 40 pM stock solution, as in*’
would therefore result in an extra 0.8 uM of C subunit, i.e. a total of about 1.3 uM of
free C subunit, which is still considerably less than the amount expected upon
complete activation of all the PKA in the IPC cells. This point is important since a
costimulatory role of Epac otherwise could explain an enigmatic observation: the
microinjection of the catalytic subunit of PKA in IPCwr cells (IPCwr) leads to much
more apoptosis in the presence of a low (sub-apoptogenic) concentration of the cAMP
analog 8CPT-cAMP.*’ The free catalytic subunit does not depend on cAMP for
activity. Since 8CPT-cAMP binds more avidly to the Rap exchange factor Epac than
to PKA*! its co-stimulatory effect could therefore indicate a role for Epac in the
cAMP-induced apoptosis.

14



Generation of Bim knock-down and BimL overexpressing IPC cells

Bim-deprived IPC cells were obtained by retroviral transfected short hairpin (sh)
RNA 29-mer. The RNAi sequences used (table S7b) were designed based on the
general guidelines from** and the RNAi generator provided by MWG
(http://www.mwgdna.com). They were inserted into the Aarl site of the retroviral

vectors carrying puromycin resistance and red fluorescent protein (RFP) markers
(GenBank Acc EU424173). Retroviral transfection of IPC cells were performed as
described previously.* The transfected cells were selected with puromycin for two
weeks, when no RFP-negative cells were detected.

To achieve enforced (over)expression of BimL in the IPC cells an expression vector
was produced in HEK293T Phoenix cells. The pMIG vector™ was used to co-express
BimL and GFP. The vector does not contain the SV40 origo necessary for efficient
plasmid replication in cells expressing large T antigen, like HEK293T. The Phoenix
cells were therefore able to produce virus before committing Bim-induced apoptosis.
Retroviral transfection of IPC cells was as described.*

Generation of IPC and HEK-293T cells with stable and transient enforced expression
of wt, truncated or caspase-resistant HSP90 cochaperone p23

In order to judge the importance of p23 and its cleavage by caspases in IPC cell death
we generated IPC cells stably overexpressing wild-type, truncated or caspase-resistant
p23. Mutated and truncated versions of p23 generated as described.*> They were
subcloned into the retroviral vector CRUS-IRES-GFP (kindly provided by Dr. Jim
Lorens, Univ. of Bergen, Norway) to achieve bi-cistronic expression of GFP and each
variant of p23. Retrovirus production and transfection of IPC cells was as described.*
GFP positive cells were isolated by flow cytometry on a FACS Aria (BD
Biosciences).

For transient transfection of HEK293T cells the wild-type, truncated or caspase-
resistant p23 was subcloned into pRK5MCS-p23-FLAG.*® The pRK5MCS-p23-
FLAG vector was a kind gift from Dr. T. Rein (Max Planck Institute of Psychiatry,
Germany).

15



Proccessing of microarray data

Raw data were normalized with the Robust Multichip Average method using the
dChip software.*” Probe sets spanning several chromosomes according to the EMBL
ensemble genes database (version 59) or having low signal strength (<100 units) were
excluded. Of the remaining genes those that differed more than 2-fold in expression
between control and N°-MB-cAMP treated cells were operationally defined as being
differentially expressed. The gene names were collected from the official annotations
from the gene expression omnibus (www.ncbi.nlm.nih.gov/geo/, version 26). The
regulated genes were in addition annotated from the ensemble database (version 59).
To identify potential CREB transcriptional targets we applied the CREB Target Gene
Database, (http://natural.salk.edu/CREB/), described in.** For this the predicted
cAMP responsive elements (CREs) in the proximal promoter region (-3000 to +300
nucleotides relative to the transcriptional start site) for the rat genes in the database
were extracted, and coupled to our expression data. The CRE was classified as
conserved when present both in the rodent and human genomes.

16



V) The regulation of Bim expression

Transcriptional regulation — roles of CREB and roscovitin-inhibited cyclin-dependent
protein kinases

The regulation of Bim transcription is complex and still incompletely understood.*
The transcriptional initiation can be regulated by Foxol/3a, B/CMyb and Jun, which
may act coordinately™ to induce Bim transcription, as well as by Egrl®', cMyc™” c-
Fos™ and Foxo1/3 co-activators like Runx1°* and NF-Y.* Bim transcription may
also be induced by relief from repressors like Bmi-1> and Lrf/ZBTB7A.> The Bim
promoter has, in addition, putative spl binding sites.’’ The transcriptional factors
involved in the postulated transcriptional regulation though the 3°-UTR of Bim have
not been identified, but the 3’-UTR-dependent repression appears to depend on an
intact MEK/ERK pathway.”®

None of the abovementioned transcription factors are known to act via cAMP
responsive elements (CRE), and therefore unlikely to be major direct mediators of the
strong cAMP-induced increase of IPC cell Bim-mRNA observed in the present study
(Figures 2,4). Rather, the blunted cAMP-induced Bim-mRNA expression in IPC cells
overexpressing the CRE-binding ICER protein (Figure 2) points to transcriptional
control by the CRE-binding CREB/CREM/ATF transcription factor family, which has
not been implicated in Bim regulation previously.

The IPC cells may have less general CRE-dependent basal activity than many other
AML cells. Apparently, their PKA activity is insufficient to affect CREB-dependent
transcription. Thus, the basal state IPC transcriptome is similar in wild-type cells and
cells overexpressing the CRE-blocking ICER protein. The low CRE-dependent basal
transcription is not due to deficient transcriptional machinery. A number of transcripts
are induced in an ICER-inhibitable manner in cells incubated with a high
concentration of PKA-directed cAMP analog. The apparent lack of basal state CREB
activity may explain why ICER overexpression failed to affect the DNR-induced IPC
cell death (Figure S3). In contrast, ICER-transfected HL-60 cells show profound
differences in gene expression without cAMP stimulation.’’ Presumably, CREB has a
lower constitutive activity in IPC cells than in AML cells, where CREB is a marker
for chemotherapy resistance and ICER for response.’'22%30-3:60
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The possibility that the CREB requirement is indirect and through regulation of the
established Bim transcription factors is improbable since neither Bmi-1, ZBTR7A,
runx1, Jun, Foxol, FOXO3a, Egrl, NF-Ya,b,c, or Myb were regulated by cAMP as
detected by our gene array (not shown). The Bim transcriptional activator cMyc was
downregulated by cAMP on the mRNA level (Figure 2a) as well as on the protein
level (not shown), which would counteract rather than stimulate Bim expression. The
cAMP-induced increase of c-Fos and cEBP-b (Figure 2a) may be of limited
importance since the cAMP-stimulated increase of Bim-mRNA was unaltered in the
presence of cycloheximide, which blocks the de novo synthesis of any proteins
induced on the mRNA level.

CREB binds to the rat Bim promoter®, presumably the two conserved CRE half-sites
about 400 bp upstream of the transcriptional start site. The involvement of CREB in
Bim transcription is nevertheless noteworthy because the Bim-promoter is TATA-
less”” and therefore, according to common dogma, unable to supply
CREB/CREM/ATF with an ordinary TATA-box binding protein for complexation, as
normally required for CREB-mediated gene cAMP regulation® (see also®). The
CRE-dependent transcription from a TATA-less promoter can be explained if
elements replace the function of TATA box.** An inverted CCAAT box has recently
been described 29 bp upstream of the rat Bim transcriptional start site.* Alternatively,
the distant upstream TATA-box associated CREs, found to function as alternative
promoter in HEK293 cells® might be active in the IPC cells.

Although outside the scope of the present work, we believe that the findings of the
present study should incite further studies of the control of the regulation of Bim
transcription in myeloid cells, inlcuding AML.

In T-cell leukemia both glucocorticoid and cAMP can induce Bim and death,
albeit much more slowly than in the IPC cells.®¢ In the IPC cells the synthetic
glucocorticoid dexamethasone (at 0.1, 1 or 10 uM and present for 6 or 24 hours)
failed to induce cell death alone and was also unable to enhance the cAMP-
induced death (not shown). This demonstrates another distinction between the
IPC and S49 cell systems.

The ability of the CDK-directed inhibitor roscovitin (RCV) to block near completely
the cAMP-induced Bim-mRNA expression (Figure 4a) is presumably due to
inhibition of CDK7 and CDK9.®"*® CDK7,9 stimulate translational elongation by
catalyzing multiple phosphorylations of RNA polymerase I1®* 7 (see also Figure 7).
The alternative explanation of inhibition of Bim transcriptional initiation factor
activity by RCV is less likely. While CDK4 can activate the Bim activator Myb
through the E2F pathway,”' neither it nor CDK1 or CDK2 appear linked to the
cAMP-induced IPC cell apoptosis.’* Furthermore, Myb is not expected to require
CRE for its activity.
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It is known that RCV through inhibition of CDK7,9°* " can depress the expression of
anti-apoptotic genes like Mcll and XIAP.” 7 These effects together with the cell
cycle arrest resulting from inhibition of CDK1,2,4 may explain the beneficial anti-
cancer effect of RCV. The inhibition of Bim expression by RCV has not been
observed before’®, and suggests caution in using RCV in tumors depending on Bim
expression for eradication.”” "’ A possible reason why Bim is highly sensitive to
CDKY7 -9 inhibition for efficient transcriptional elongation may be its long 3’-UTR,
which is essential for Bim-mRNA repression by the MEK-ERK pathway.>®

We have shown previously that overexpressed CDKS promotes cAMP-induced IPC
cell apoptosis while kinase activity deficient (dominant negative) CDKS5 counteracts
it.”” The overexpressed dominant negative CDK5 was a more moderate apoptosis
inhibitor than RCV, indicating that the main effect of RCV was not by inhibition of
CDKS5 alone, but mainly by the inhibition of other CDK’s like CDK7,9. The effect of
CDKS5 to enhance apoptosis may be by phosphorylating nuclear transcription
factors™. CDK5 may also regulate the cellular response to DNA damage®' and the
translational efficiency of selected mRNA transcripts, as recently demonstrated in
myeloid cells.*

Post-transcriptional regulation of Bim expression.

The majority of reported full length Bim transcripts in mouse and human
(GI:323362953; GI1:90093356, accessed 2011.07.30) have a large (about 4.2 kb)
3’'UTR. The AU-rich elements in 3’UTR contribute to Bim mRNA stability by
binding the heat-shock cognate protein p70.® The 3"UTR of Bim-mRNA is also
targeted by the miR-106b-25 polycistron, which suppresses Bim translation.84 Also
miR17-92*" and miRNA 221* binding supress Bim expression.

In view of the importance of Bim it is not unsurprising that its expression is regulated
also at the level of protein stability and association to the cytoskeleton. Such
regulation is documented mainly for the longer isoforms. In BimEL, 8 or more sites
are phosphorylated by ERK and other kinases. The phosphorylations appear to
regulate the interaction with other cellular components including ubiquitin ligase.
ERK is reported to promote ubiquitin-dependent proteasomal degradation of Bim.***°
The i1solated phosphorylation of mouse BImEL Ser83 by PKA appears to stabilize
Bim’' although Bim may be destabilized under conditions when the same site is

phosphorylated by Akt.”?
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