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SI Methods
Bacterial Strains, Cultures, and Sample Preparation. Strains of
Bacillus subtilis carrying transcriptional fusions with the gfpmut3
reporter gene were constructed using the pBaSysBioII plasmid
designed for high throughput analysis of promoter activities by
Live Cell Arrays (1). Integration by a single cross-over event re-
sults in the duplication of the promoter region at its homologous
chromosomal locus in B. subtilis 168 strain (Fig. S2). Protocols for
media preparation and cell culture were adapted from Botella et
al. (1) and the BaSysBio standardized procedures (http://www.
basysbio.eu). Preparation of cell samples and agarose pads for
microscopy imaging is described in detail in Ferguson et al.
(2). Briefly, cells were harvested from exponentially growing cul-
tures at 37 °C in minimal M9 medium supplemented with either
0.5% glucose (glycolytic conditions) or 0.5% malate (gluconeo-
genic conditions) as the sole carbon source. Concentrated bacter-
ial aliquots (3 μL) were deposited on M9-agarose (1.5%) pads
and covered with a glass coverslip following a procedure allowing
the consistent formation of a high-density cell monolayer at the
surface.

Two-Photon Scanning Microscopy and Number and Brightness (N&B)
Analysis. Cells were imaged on an Axiovert 200M inverted micro-
scope (Zeiss, Germany) equipped with an ISS laser scanning
module and an ISS Alba (ISS) with APD detection (SPCM-
AQR-15 APD Perkin Elmer). GFP was excited at 930 nm with
a femtosecond pulsed infrared Titanium Sapphire laser (Spectra
Physics MaiTai, Newport). In the laser scanning module, 930 nm
excitation light was expanded to fill the back aperture of a Zeiss
Apochromat 63X, 1.4 NA, oil immersion objective. Laser power
before injection into the laser scanning module was 15 mW. In-
frared excitation light was filtered from the detection path by an
E700 SP 2P dichroic filter and a secondary E700 SP 2P filter
(Chroma Technologies) placed between the laser scanning mod-
ule and the detector.

A series of 50 raster scanned 20 μm × 20 μm images of 256 ×
256 pixels were recorded with a 50 μs laser dwell time per pixel,
chosen to be faster than the GFP diffusion coefficient and to
provide statistically relevant photon counts while reducing the
effects of photobleaching. Image stacks were analyzed for num-
ber and brightness (N&B) values at each pixel taking into account
the detector shot noise, using programs written in IDL 6.0 (ITT
Visual Information Solutions). A summary of the procedure used
in the application of N&B analysis to bacteria is given below, but
a detailed explanation of this method, its detection limits and
advantages compared to other fluorescence fluctuation-based mi-
croscopy methods can be found in (2).

Fluorescence fluctuations (δF) from the average intensity over
50 scans (hFi) were first calculated at each pixel, providing
pixel-based maps of the true (shot noise corrected) molecular
brightness, ϵ:

εðx;yÞ ¼ hδF2iðx;yÞ − hFiðx;yÞ
hFiðx;yÞ [S1]

The average true molecular brightness hεi was determined for all
of the cells in the field of view using only those central pixels for
which the excitation volume (volex) is encompassed within the
cells. For the rod-shaped B. subtilis cells imaged with our two-
photon laser microscope, volex has been determined to be 0.07 fL.
The spatially averaged true molecular brightness for each field of

view allowed for the calculation of the number of molecules, npix
(∕volex), at each pixel:

npixðx;yÞ ¼
hFi2ðx;yÞ

hδF2iðx;yÞ − hFiðx;yÞ [S2]

Then for each cell in the field of view, npix was averaged over the
M pixels situated in an ellipse representing the central 50% of the
cell area using a regularized version of Eq. S7 from Digman et al.,
(3) to provide the number of molecules in each cell:

ncell ¼
1

M∑
M

j¼1

hFi2ðjÞ
hδF2iðjÞ

hεi þ 1

hεi [S3]

The averaged intracellular concentration of GFPmut3 molecules
(hnigfp) for a distribution of cells and their intrinsic brightness
(hεigfp) were obtained by correcting the average of the distribu-
tion hncelli for background fluorescence from the BSB168 receiver
strain bearing no gfp,

hnigfpðmolar concentrationÞ ¼ ðhncelli − hncelliBSB168Þ∕volexNA

[S4]

hεigfp ¼ ðhFcelli − hFcelliBSB168Þ∕hnigfp [S5]

where NA is the Avogadro number. The total number of GFP
molecules within any individual cell can be obtained by multiply-
ing the concentration [S3] by the cell volume, which can be cal-
culated from the images.

Particles number histograms were obtained from measure-
ments on hundreds of different cells for each strain and under
each condition tested. Where the background contribution was
negligible and the GFP fluorescence signal could be reliably de-
convolved, we estimated GFPmut3 intrinsic molecular bright-
ness, hεigfp, at 0.098� 0.024 counts per molecules per 50 μs dwell
time (∼2000� 50 counts per second per molecule). We noted no
significant influence of GFP concentration or physiological con-
ditions on the value of hεigfp (Fig. S3).

Modeling of Gene Expression from Bacterial Repressible Promoters.
We use a two-state promoter model. The two states, denoted as
free and bound (or active and inactive) are represented as two
binary variables D and DR, respectively. The transitions between
the two states are produced by the binding and unbinding of the
repressor.

We consider that some of the biochemical reactions depend on
the state of the promoter; these reactions are called switched.
Switched reactions do not change the state and depend on D,
DR. We model this by (formally) considering that switched reac-
tions have D or DR as reactants, but also as products; this formal
requirement is just a shorthand and allows us to avoid biochem-
istry details. The two-state model is based on the hypothesis that
the polymerase RNAP concentration is not limiting. Thus, we do
not include the concentration of free polymerase among our
variables.

Binding and unbinding (or activation and inactivation) of
the active repressor R to the DNA-bound RNA-polymerase
(D.RNAP) are modeled as reactions of constants kon1 and koff1 ,
respectively:
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Dþ R⇄
kon
1

koff
1

DR [S6]

D takes the values 1 and 0, when the operator site is free or bound
by the repressor, respectively.DR is determined by a conservation
law:

DþDR ¼ 1 [S7]

Transcription initiation followed by the formation of the elonga-
tion complex with active, transcribing RNAP (tRNAP) has rate
constants k2 or k02 depending on repressor being off and on DNA.

D→
k2 tRNAPþD DR→

k0
2 tRNAPþDR [S8]

After promoter clearance, the elongation complex transcribes the
mRNA leader region with rate constants k3 or k03 related to the
distance between the promoter and the translation initiation site,
and which can be modeled by two switched first order reactions:

tRNAPþD→
k3RBSþD tRNAPþDR→

k0
3RBSþDR [S9]

A switched first order reaction of rate constant k4 models disso-
ciation of the stalled (active) polymerase from DNA:

tRNAPþDR→
k4DR [S10]

This reaction controls the size of the pool of active stalled poly-
merase molecules in the tRNAP state, by reducing jamming.
A second switched reaction is superfluous and not represented
in the free promoter state (considering that this reaction will
be dominated by elongation of rate constant k3 justifies pruning
according to the reduction rules presented in Radulescu et al. (4).
In our model, and compared to Kierzek et al. (5) [see also Crudu
et al. (6)] we pool several states related by rapid transitions and
consider that RBS gives rise directly to the ribosome elongating
the protein chain, ElRib (rate constant k6):

RBS→
k6ElRibþRBS [S11]

The GFPmut3 variant used in our experiments has been shown to
mature within a few minutes (7), therefore we considered that
production of folded and matured GFPmut3 (MdGFP) is limited
by the step producing the unfolded protein (rate constant k7).
Thus, in our model, we represent only the final folded GFP.

ElRib→
k7MdGFP [S12]

Both mRNA (RBS) and protein (MdGFP) undergo degradation
reactions:

RBS→
k5Ø [S13]

MdGFP→
kdeg

Ø [S14]

However, the GFPmut3 fluorescent protein is known to be also
very stable (with a lifetime of over 10 hours) and the protein de-
gradation reaction models in fact the dilution resulting from cell
growth:

kdeg ¼ logð2Þ∕T; [S15]

where T is the generation time. Reaction [S13] gathers several
processes. Before the ribosome binds to it, the RBS is unpro-
tected for a short time and degrades with a large constant k05.
After the ribosome-binding, the RBS degradation is much slower
with a constant k″5 ≪ k05. The effective degradation constant is
k5 ¼ ð1 − puÞk″5 þ puk

0
5 where pu is the probability to have an un-

protected RBS (6). Kierzek et al. (5) uses a full description of
the mechanism, but neglects degradation of the protected
RBS. The effective degradation in this situation is k5 ¼ puk

0
5

and needs estimates of both pu and k05 to be calculated. The num-
bers proposed by Kierzek et al. (5) overestimate pu and lead to
very rapid RBS degradation. Here we consider that pu is very
small and take k5 ¼ k″5. Thus, we do not need values for pu, k05
and estimate k5 directly from the mRNA lifetime (about two min-
utes in our conditions).

In all cases, the lifetime of the mRNA is much shorter than T
(i.e., k5 ≫ kdeg).

Parameter Fitting for the Stochastic Model. Approximate first mo-
ments of the fluctuations.The following calculations are important
for our fitting procedure.

Let us defined the two switching times:

τon ¼ NAVo∕kon1 R; [S16]

τoff ¼ 1∕koff1 ; [S17]

that are the times during which the promoter is active and inac-
tive, respectively.

The probability that the promoter is free (active) reads:

p ¼ τon

τon þ τoff
: [S18]

Our full model uses a first order reaction mechanism in which the
rates constants k2, k3, k4 are two-valued random variables con-
trolled by the repressor. The mean rate constants for the corre-
sponding reactions S8–S10 read:

k̄2 ¼ pk2 þ ð1 − pÞk02;
k̄3 ¼ pk3 þ ð1 − pÞk03;
k̄4 ¼ ð1 − pÞk4 [S19]

The chemical master equation can be used to obtain closed
formed equations for the average numbers of molecules at stea-
dy-state, in first order reaction mechanisms with deterministic,
single-valued rate constants. However, our model has random
two-valued constants, and the same method leads to infinite sys-
tems of equations for the hierarchy of moments without closure
for the first moments. In order to obtain closure, we neglect the
correlations between the reaction constant and the number of
substrate molecules which reads hkXi ¼ hkihXi (note that this
relation is exact for the zeroth order reaction Eq. S8 because
in this case X ¼ 1 and k ¼ k2;k02 with probabilities, p and 1 − p,
respectively; in general, this relation can be justified by stochastic
averaging when the time scales of the processes k and X are well
separated). We obtain the following averaged steady-state equa-
tions:

k̄2 ¼ ðk̄3 þ k̄4ÞhtRNAPi; k̄3htRNAPi ¼ k5hRBSi;
k6hRBSi ¼ k7hElRibi ¼ kdeghMdGFPi

[S20]

Using Eqs. S18 and S20, we obtain an analytic approximation for
the average MdGFP:
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hMdGFPi ¼ k̄2
kdeg

k̄3
k̄3 þ k̄4

k6
k5

: [S21]

Approximate secondmoments of the fluctuations.Considering that a
burst is produced each time the repressor unbinds (this hypoth-
esis is valid if the mRNA burst size defined as the product k2τon is
sufficiently strong), the frequency of bursts (average number of
bursts during the time, T∕ logð2Þ ¼ 1∕kdeg) is simply:

a ¼ 1

kdegðτoff þ τonÞ [S22]

In the bursting regime, the bursting frequency a, the burst ampli-
tude b, the mean hMdGFPi and the variance Var(MdGFP) of the
number of proteins satisfy the following approximate Gamma dis-
tribution relations (the Gamma approximation proposed by
Friedman et al. (8) is correct under conditions (τon must be much
shorter than τoff and the burst size sufficiently large) specified in
Crudu et al. (6):

a ¼ hMdGFPi2∕VarðMdGFPÞ [S23]

b ¼ VarðMdGFPÞ∕hMdGFPi [S24]

From Eqs. S21–S24 we can obtain an approximation for the sec-
ond moment of the steady-state distribution of the protein num-
bers:

VarðMdGFPÞ ¼ kdegðτoff þ τonÞ
�
k̄2
kdeg

k̄3
k̄3 þ k̄4

k6
k5

�
2

[S25]

To summarize, in gene networks, the type and the amplitude of
steady-state fluctuations depend on the relations between the
time scales of the system. We emphasized two switching times,
τon ¼ NAVo∕k1onR (with V 0 the cell volume and NA the Avoga-
dro’s number) and τoff ¼ 1∕k1off , corresponding to the periods
during which the active repressor R is unbound and bound to
the DNA, respectively. Another important time scale is the life-
time of the mRNA, τ5 ¼ 1∕k5. Depending on the relations be-
tween these time scales, our model can have different
stochastic regimes: Poissonian, bursting, and telegraph noise re-
gime. The Poissonian regime corresponds to fast switching, when
τon þ τoff ≪ τ5. Bursting means that the promoter has very strong
activity during a very short period, τb ¼ τon ≪ τ5 that is followed
by a longer inactivity period, τoff ≫ τon, whereas these periods are
equivalent for telegraph noise. In the case of bursting, the burst
frequency is given by Eq. S22 if a burst occurs each time the re-
pressor unbinds. If the number of mRNA per burst is small (the
mean value k2τon is small) then the probability to have no burst
when the repressor unbinds is not negligible. In this case the burst
frequency Eq. S22 should be corrected by the factor 1 −
expð−k2τonÞ smaller than one, which is the probability to have
at least one transcript when repressor unbinds. The Eq. S25
would change accordingly. Because we use the approximation
only as an initial guess, we did not apply this correction.

Parameter optimization.We consider that, for each of the two car-
bon sources used in this study, the bacteria population had en-
ough time to adapt and to reach exponential growth.
Accordingly, distributions of gene expression can be considered
to be at steady-state. The experimental histograms have to be
compared to the theoretical steady-state probability densities.
The latter are solutions of the stationary master equation for

the above model and depend on several model parameters μ
and the conditions α ∈ ½1;2� (two nutrient conditions). The num-
bers of molecules predicted by the stochastic dynamics of the
model in the bacterium volume V 0 were divided by a factor 10
to cope with the difference between the observation volume
(0.07 fl) and the bacterium volume (approximately 0.7 fl). An in-
dependent random variable has been added to the resulting num-
bers to account for the fluorescence background (of mean 17.48
and variance 14.51 in the observation volume of 0.07 fl).

Let fpexpi ðαÞg1≤i≤N be the experimental histogram computed
with bin centers ni and fpiðμ; αÞg1≤i≤N be the theoretical density
estimated at ni. We search for parameters μ minimizing the fol-
lowing objective function:

f ðμ; αÞ ¼ ∑
2

α¼1
∑
N

i¼1

ðpiðμ; αÞ − pexpi ðαÞÞ2: [S26]

For this complex model, we do not posses analytical solutions of
the master equations. Therefore, comparison between model and
data, as well as parameter regression should rely on extremely
time consuming numerical simulations by the Gillespie algorithm.
Two improvements of this brute force strategy allowed us to re-
duce the computation time.

Averaging. The main problem of the Gillespie algorithm is fast
unbroken cycles (see ref. 6) that lead to expensive computation.
Note that multiscale systems of chemical reactions may contain
fast reactions that are the cause of expensive computation. For
example, the total number of simulated reactions through a rapid
chain is small, because the source is rapidly exhausted. A fast un-
broken cycle is a cycle containing fast reactions and having non-
negligible mass at steady-state. Unbroken means that whenever
there are reactions getting mass out of the cycle, these are slower
than reactions recirculating the mass within the cycle. Fast unbro-
ken cycles are sources of expensive computation because they fire
fast reactions continuously and recyle molecules. A simple solu-
tion to accelerate simulation of such cycles is averaging, consist-
ing in replacing the cycling fast variables by their average values.
In the repressed state of the promoter PcggR, the fast cycle,
RNAP → tRNAP, tRNAP → RNAP, produces rapid oscillations
of tRNAP around its average value. In the unrepressed state of
the promoter PcggR, and all the time for the promoter PgapB, this
cycle is broken by the faster reaction

tRNAP → RBSþRNAP

(not active during repressed state). Averaging in this case means
simply replacing tRNAP with its average value computed with
Eq. S20. Because the promoter is almost all the time repressed,
this leads to a drastic reduction of the simulation time in the case
of PcggR. Simulation of PgapB does not have this problem and is
sufficiently fast. The gain in execution speed allowed us to gen-
erate a sufficiently large number of samples needed to estimate
the stationary probability density.

Using analytical approximations for the moments of the distribution.
The second improvement allows us to reduce our optimization
problem to a local search. Starting with analytical approximations
for the first two moments of the theoretical distribution, Eqs. S21,
S25, we fix some parameters to generic values, and fit others from
the first two moments of the experimental histograms under dif-
ferent conditions. This has been done according to the following
procedure.

1) Choose values for invariant parameters. Some parameters de-
pend only on the GFP reporter and do not depend on the pro-
moter or carbon source.
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• k5, (degradation of mRNA molecules) were chosen as already
described (2 min for the lifetime of mRNA τ5 ¼ 1∕k5, aver-
aging between unprotected (5) and ribosome protected mRNA
and reasonable for our growth conditions).

• k6, (ribosome-binding and translation initiation to the RBS) is
taken from Kierzek et al. (5) assuming fast binding by saturat-
ing ribosomes, and 0.5 s−1 for RBS clearance.

• k7 (translation, folding and maturation of the GFP) taken to be
1–10 min, as we observe GFP fluorescence in one minute after
induction and the halt of the increase in GFP signal between
1–10 minutes after administration of a ribsome poisoning anti-
biotic. The fit was effectuated with 1 min; we have checked that
an increase of this time by a factor 10, modifies the fitted para-
meters by less than 5%.

• kdeg, (degradation of GFP) is calculated from Eq. S15 using
an average generation time of 70 min as experimentally de-
termined.

2) Choice of parameters that do not depend on carbon source, but
depend on the promoter.

• k02 (transcription initiation and promoter clearance) was con-
sidered very small for PgapB (CcpN is thought to interact with
RNAP and impede initiation as described in the main text),
namely k02 ≪ pk2, and equal to k2 for PcggR.

• k3 (transcription of the mRNA leader region from the promo-
ter to the RBS) was estimated using the rate of polymerase
movement (30–45 nucleotides per sec at 37 °C (9) and the
length between the transcription start and the RBS (about
95 bp in case of PcggR, 45 bp in case of PgapB).

• k03 was considered very small for CggR because of the road-
block exerted on the transcribing RNAP, namely k03 ≪ pk3,
and equal to k3 for GapB (no roadblock).

• k4 (dissociation of the transcribing RNAP) was chosen an
order of magnitude smaller than k3. Smaller values would pro-
duce crowding, therefore we need k4 ≫ pk3.

Parameter fit.The parameters k2, kon1 , koff1 were fitted from data,
as follows:

We provide some range for the parameter k2, 0.5–1 for PcggR
and 0.001–1 for PgapB. Eq. S21 allows finding p (probability that
the promoter is free/active) from the average expression. Inter-
estingly, this was found small for the two promoters in all condi-
tions. Together with the condition k4 ≫ pk3, this finding justifies
the following simplified expressions, resulting from Eqs. S18, S21,
and S25 when p is small:

p ¼ τonkoff1 : [S27]

NgapB ¼ τonkoff1

kdeg

k6k2
k5

; Ncggr ¼
τonkoff1

kdeg

k3k6k2
k4k5

[S28]

a ¼ koff1

kdeg
[S29]

bgapB ¼ τon
k6k2
k5

; bcggr ¼ τon
k3k6k2
k4k5

[S30]

where NgapB, bgapB are the average expression and burst ampli-
tude for PgapB, PcggR respectively.

From the experimental values of a and Eq. S29 we can directly
estimate the parameter koff1 . Once this found we can use Eq. S28
to find τon for several values of k2. By numerical tests we found
that Eq. S28 is rather accurate, but Eq. S29 and Eq. S30 are less
accurate (the reason is the small number of mRNA per burst in
the repressed conditions; see below). Next, we used Gillespie si-

mulations (instead of the approximated formulas) to fit the para-
meters koff1 , τon and k2. Starting with preliminary estimates as
initial guess, we searched for the best fit of experimental average
and Fano factor under the two conditions. For this stage, Gille-
spie simulations estimate the first two moments, which is less time
costly than estimating the full distribution.

The result of the parameter relaxation for PgapB is shown in
Fig. S4A. We can notice from Eq. S28 that given k2 and the mean
expression, the parameters koff1 , τon are inversely proportional. In
order to increase the Fano factor b, τon should increase and koff1

should decrease by the same factor. However, in repressed states,
Eq. S30 overestimates the sensitivity of the Fano factor on τon and
koff1 . It is possible, that once the average is fitted, which fixes the
product τonkoff1 , the optimization procedure uses large changes to
τon in order to fit the Fano factor. This means that, although the
product τonkoff1 is accurate, the absolute values of τon and koff1

could have large errors in repressed conditions, especially for
PgapB where repression is drastic. Furthermore, k2 must be chosen
to fit both repressed and permissive conditions. Although the
choice in the imposed range can be arbitrary for permissive con-
ditions, it is not so for the repressed conditions. Indeed, in the
latter conditions, the Fano factor depends less on kon1 and more
on k2, which imposes the tuning of k2.

After this stage we obtain a full set of parameters that fit the
first two moments of the expression distribution. Further refine-
ment uses the objective function Eq. S26 and needs estimates of
the distribution. The refined parameter values are given in
Table S1.

To conclude, the discussion shows that parameters τon, koff1 , k2,
k3, k4, k5, k6, kdeg are critical. Remaining parameters are noncri-
tical and do not need to be known with precision. For instance k7
is noncritical. Similarly, the value of k3 for PgapB is noncritical.

Although the number of critical parameters may seem large, a
number of these can be compacted into a single effective para-
meter such as k2k3k6

k4k5kdeg
for PcggR, or

k2k6
k5kdeg

for PgapB. A change of this
effective parameter will change the absolute values of the fitted
parameters but not their relative changes from one condition to
another. As a consequence, although choices for some critical
parameters may need changes from the generic values that we
used, we can trust the relative variations of the fitted parameters
from repressed to permissive conditions.

Distribution and moments from Gillespie simulations.Gillespie simu-
lations generate trajectories ðti;XiÞ;i ∈ ½1;N�, where ti, Xi repre-
sent times when a reaction happens and numbers of protein
molecules after the reaction, respectively. The length of these tra-
jectories is several thousands of generation times. By the ergodic
theorem for Markov processes we can use long trajectories to es-
timate state probabilities by the average time spent in a state. Si-
milarly, the moments of the steady-state distribution are
estimated as follows:

hXi ¼ 1

tN − t1 ∑
N

i¼1

Xiðtiþ1 − tiÞ [S31]

hX2i ¼ 1

tN − t1 ∑
N

i¼1

X2
i ðtiþ1 − tiÞ [S32]

VarðXÞ ¼ hX2i − hXi2 [S33]

In order to estimate the steady-state distribution, we have chosen
to resample (by interpolation) the trajectory ðti;XiÞ;i ∈ ½1;N�, by
using a constant time step. The result is a vector ðX 0

iÞ;i ∈ ½1;M�,
representing realizations of the steady-state variable X . We add
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to this an independent vector ðBiÞ;i ∈ ½1;M�, representing the
background (this was generated using a gamma distribution with
parameters given by the background average and variance). The

vector ðX 0
i þ BiÞ;i ∈ ½1;M�, is used to estimate the steady-state dis-

tribution that is compared to the experimental histograms.
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Fig. S1. Comparison of 1-photon vs 2-photon scanningmicroscopy of live bacterial cells expressing gfpmut3 promotor fusions. (A) Mean fluorescence intensity
decrease over 50 scans of immobilized B. subtilis cells expressing PgapBgfpmut3 under malate and imaged using our 2-photon set-up (red line) or a confocal 1-
photon microscope (blue lines) at different laser power (thick line, 0.5%; thin line, 0.2%; dotted line 0.1%). For each acquisition, 50 frames of 20 × 20 μm
(256 × 256 pixels) were recorded using a laser dwell time of 50 μs. A Zeiss LSM780 confocal microscope was used in photon-counting mode, using an excitation
wavelength of 488 nm and a GaAs-P detector witha 481–551 nm emission band pass. In the two-photon mode, GFP was excited at 930 nm with a femtosecond
pulsed infrared laser at 15 mW as desribed inMaterials and Methods. Severe photobleaching is observed in the 1-photon mode except at very low laser power
(0.1%), whereas no photobleaching is observed under the conditions used in this study for two-photon scanning microscopy. (B). Fluorescence images of the
strongly repressed PgapBgfpmut3 transriptional fusion strain grown on glucose and of the BSB168 receiver strain carrying no gfp. The same cell samples were
imaged with the confocal microscope using the lowest laser power (0.1%) or with the 2-photon microscope with the addition of a filter band pass 525/70
(Chroma). Images of the total fluorescence recorded over 50 scans are shown using the same brightness and contrast levels. The auto fluorescence background
level observed in the receiver strain is lower in the two-photon mode, revealing cell-cell variations hardly visible in the one-photon mode.
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Fig. S2. Organization of the B. subtilis chromosomal region carrying the gfpmu3 promoter fusions used in this study. DNA fragments of about 400 bp com-
prising the promoter regions are fused to the 5′ end of the gfpmut3 coding sequence (green box) preceded by an optimized ribosome-binding site (RBS, green
triangle) ensuring that all the steps yielding to GFP production past the synthesis of the RBS are identical. Integration of the pBaSysBioII derivatives (1) carrying
the gfp transcriptional fusions and a spectinomycin resistance gene (spec) results in the duplication of the promoter and regulatory region. In case of the gapA
operon (top schematic) induced under glycolytic conditions, the double operator site recognized by the CggR repressor (black triangles) is located between the
promoter sequence for transcription start (black arrow) and the cggR gene, the first gene of this auto-regulated operon. An alternative promoter (dotted
arrow) allows for the weak constitutive expression of the four downstream glycolytic genes of the gapA operon (beginning with pgk, as shown). Middle
schematic shows the unregulated ccpN promoter, from which both CcpN and its negative regulator, YqfL are expressed. CcpN represses the expression of
the gluoconeogenic genes gapB (bottom schematic) and pckA, one of its tandem operator sites (duplicated gray triangles) overlapping with the promoter
sequence. Organization of the pckA promoter fusion is very similar to that of gapB.

Fig. S3. Promoter activity profiles monitored by LCA of PcggR and PgapB during a nutritional shift. Fluorescence changes (A) and growth curve (B) of the
reference strain BSB168 (white squares) and the PcggR-gfpmut3 (black circles) or PgapB-gfpmut3 (gray circles) fusion strains were monitored in 96-well micro-
plates (CELLSTAR Greiner Bioone). Cells were grown to exponential phase at 37 °C in 100 μL of M9 synthetic medium supplemented with 0.4% malate as a
carbon source. At the time indicated by a dotted line, glucose was added to cultures growing exponentially onM9-malate, at a final concentration of 0.4%. LCA
measurements and calculation of promotor activities were performed as described in Botella et al. (1).
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Fig. S4. Parameter fit for PgapB in glucose (red) and malate (blue) conditions. Starting from preliminary estimates the parameters were relaxed to fit the
experimental average and Fano factor associated to the observed numbers distribution as shown in Fig. 4C (A) circles are experimental values, diamonds values
for optimal parameters, crosses, various relaxation steps. (B) The approximate formula for the average expression Eq. S21 is compared to the numerical aver-
age. (C) Values of the parameters at various relaxation steps. Diamonds are optimal parameters. Along the lines the average expression is constant, various lines
correspond to different values of k2 (0.04, 0.08, 0.2).

Table S1. Estimated and fitted parameters used for modeling PcggR and PgapB promoter activity

Reaction* Rate constant

Estimated or fitted value [s−1]†

PcggR PgapB

malate glucose malate glucose

Dþ R → DR Binding of repressor
molecules to operator DNA

k1
onR∕ðNAVoÞ‡ 5.4

(0.1–10)
11.2

(1–100)
0.6

(0.1–10)
12.7

(0.1–10)
DR → Dþ R Dissociation of the repressor

from operator DNA
k1

off 0.00085
(0.0001–0.1)

0.0116
(0.005–5)

0.01
(0.01–1)

0.007
(0.01–1)

Dþ RNAP → Dþ tRNAP Transcription initiation and
promoter clearance

k2 0.6
(0.5–1)

0.6
(0.5–1)

0.2
(0.001–1)

0.2
(0.001–1)

DRþ RNAP → DRþ tRNAP id as above in the presence
of the repressor

k0
2 0.6

(0.5–1)
0.6

(0.5–1)
<0.001

(0.00001–1)
<0.00002

(0.00001–1)
Dþ tRNAP → Dþ RBS Transcription of the mRNA

leader region (from
promoter to RBS)

k3 0.15 0.15 0.33 0.33

DRþ tRNAP → DRþ RBS id as above in the presence
of the repressor

k0
3 <0.00002

(0.00001–0.01)
<0.0001

(0.00001 0.01)
0.33 0.33

DRþ tRNAP → DRþ RNAP Dissociation of RNAP k4 0.01
(0.0001–0.01)

0.01
(0.0001–0.01)

≪0.33 ≪0.33

RBS → Ø Degradation of mRNA
molecules

k5 0.008 0.008 0.008 0.008

RBS → ElRibþ RBS Ribosome-binding and
translation initiation

k6 0.5 0.5 0.5 0.5

ElRib → MdGFP Translation, folding and
maturation of GFP

k7 0.015 0.015 0.015 0.015

MdGFP → Ø Degradation of matured GFP kdeg 0.000165 0.000165 0.000165 0.000165

*D, operator DNA; R, repressor molecule; RNAP, RNA-polymerase; tRNAP, transcribing RNAP; RBS, mRNA molecule with ribosome-binding site; ElRIB,
elongating ribosome; MdGFP, matured green fluorescent protein; Ø, degraded molecule.

†Estimated or fitted values of the rate constants used for the simulation of transcriptional activities from the PcggR or PgapB promoters at steady-state in B.
subtilis cells grown on malate or glucose. Values obtained by fitting the experimental distribution data (Fig. 4C) are underlined, with their acceptable
estimated range indicated in parenthesis. Explanations and references for the choice of the invariant and fitted parameters are given in SI Text.

‡NA: Avogadro’s number; V0: average volume of the bacterial cells (0.7 fL).
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