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SI Text
Model Reduction.To formalize the timescale separation, we define

a coordinate transformation from the original N þ NðN − 1Þ
2

variables to a new set of independent variables that distinguishes
between slow and fast variables. The original variables (defined
in the main text) include the direction of motion of each of the N

individuals θj, j = 1, . . . , N, and the
NðN − 1Þ

2
independent social

interaction weights ajl, j = 1, . . . , N, l = j + 1, . . . , N.
Let N ′k ⊂N k denote the set of Nk − 1 indexes in N k corre-

sponding to the individuals in subgroup k excluding the in-
dividual with the largest index. Let i ¼ ffiffiffiffiffiffiffi

− 1
p

. For each j∈N ′k and
each k = 1, 2, 3, we define the complex variable αj as follows:

αj ¼ cos

 
Nkθj −

X
l∈N k

θl

!
þ isin

 
Nkθj −

X
l∈N k

θl

!
: [S1]

The variable αj quantifies how close the direction of motion of
individual j is to the average direction of motion of its subgroup
Ψk. When all individuals in subgroup k move in the same di-
rection, αj = 1 for every j∈N ′k. We define the new set of inde-

pendent variables by the N +
NðN − 1Þ

2
set of variables (Ψk, αj,

ajl). That this change of variables is well defined near the in-
variant manifolds described below is proved in ref. 1.

Let ε = max
� 1
K1

;
1
K2

�
. Eqs. 1–4 from the main text can be

written with respect to the new variables as
dΨ1

dt
¼ 1

N1ρ1

X
l∈N 1

 
sinð�θ1 − θlÞ

þ K1

N

 XN
n¼1

alnsinðθn − θlÞ
!!

cosðΨ1 − θlÞ; [S2]
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dt
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N2ρ2

X
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sinð�θ2 − θlÞ

þ K1

N

 XN
n¼1

alnsinðθn − θlÞ
!!

cosðΨ2 − θlÞ; [S3]
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 XN
n¼1
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!!

cosðΨ3 − θlÞ; [S4]
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; l∈ f1; . . . ;Ng; j∈ flþ 1; . . . ;Ng;

[S8]

for ρk ≠ 0, k = 1, 2, 3.
For ε� 1, we have that εK1 and εK2 are of order of magnitude

1. We also assume that Nk=N and K1/(NNk) are of order of
magnitude 1. Then, the model of Eqs. S2–S8 has the form of
a standard singular perturbation model (2):

dx
dt

¼ fðx; z; εÞ [S9]

ε
dz
dt

¼ gðx; z; εÞ; [S10]

where x is the vector of the three slow variables Ψk and z is the

N − 3þ NðN − 1Þ
2

vector of fast variables (αj, ajl). Each of the

eight invariant manifoldsM101,M110,M000,M010,M001,M100,
M011, and M111, described in the main text, is computed as an
isolated equilibrium solution of the fast dynamics given by Eqs.
S5–S8 when ε = 0, i.e., an isolated solution z = h(x) of g = (x, z,
0) = 0. These eight solutions correspond to α j = 1 for all j, which
implies that ρk = 1 and θj = Ψk for j ∈ N k and k = 1, 2, 3.
Additionally, ajl ∈ {0, 1} for all j, l, and in particular ajl = 1 when
j ∈ N k and l ∈ N k. If j ∈ Nm and l ∈ N n, m ≠ n, then ajl = Anm.
The reduced dynamics on each invariant manifold (Eq. 6 in the

main text) are derived by substituting the corresponding isolated
solution into the slow dynamics given by Eqs. S2–S4; i.e., dx/dt =
f(x, h(x), 0). These dynamics are gradient dynamics; i.e., they can
be written in the form

dΨk

dt
¼ −

∂V
∂Ψk

; k ¼ 1; 2; 3;

where V = V(Ψ1, Ψ2, Ψ3). As a result, all equilibrium solutions on
each manifold are critical points of V and there are no periodic
solutions. An equilibrium solution on a manifold is (exponentially)
stable if the eigenvalues of the Jacobian of the reduced dynamics
evaluated at that equilibrium all have strictly negative real part.

Stability of InvariantManifolds.To determine the (local) stability of
each of the eight invariant manifolds, we check stability of the
boundary layer equations about each stable solution on the
manifold. The boundary layer equations can be computed from
the fast dynamics Eqs. S5–S8 as described in ref. 2. An invariant
manifold is stable, i.e., locally attractive near a stable solution on
the manifold, if the boundary layer dynamics are locally expo-
nentially stable near the stable solution on the manifold, uni-
formly in the slow variables (Ψ1, Ψ2, Ψ3). Here, conditions for
local exponential stability can be proved by showing that the
eigenvalues of the Jacobian of the boundary layer equations
evaluated at the stable solution on the manifold have strictly
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negative real part. Singular perturbation theory then guarantees
that solutions to the full dynamics starting close to the stable
solution on the invariant manifold stay close to solutions of the
reduced dynamics. See ref. 2 for details.
Stability of any of the invariant manifolds is satisfied if and only

if the following six terms are all negative when evaluated at the
equilibrium solution on the manifold,

−
1
N

�
1−

1
Nk

� 
Nk þ

X
l≠k

NmAkmcosðΨm −ΨkÞ
!
; k ¼ 1; 2; 3;

[S11]

and (1− 2A12)(ρ12− r), (1− 2A13)(ρ13− r), (1− 2A23)(ρ23− r),

where ρkm ¼ jcosð1
2
ðΨk −ΨmÞÞj.

As an example, consider the manifold M010, where A13 = 1
and A12 = A23 = 0. The only stable solution on this manifold is
(Ψ1, Ψ2, Ψ3) = ð0; �θ2; 0Þ, because �θ1 ¼ 0. Evaluating the sign of
the six terms above at this equilibrium implies thatM010 is stable
if and only if 				cos

��θ2
2

�				− r< 0;

which is equivalent to cos�θ2 < 2r2 − 1, the condition cited in the
main text.

Initial Conditions.Fig. S1 shows the initial direction of motion θj(0)
for individuals j= 1, . . . , N, used in the simulations in Figs. 2 and
3 in the main text and the simulations in Figs. S2 and S3. All
initial values of interaction gains alj(0) are taken from a uniform
distribution with mean = 0.2 and SD = 0.1.

Randomness.Fig. S2 shows two simulations of the dynamics of Eqs.
1–4 in the main text with the same initial conditions and pa-

rameter values as for the simulations shown in Figs. 2 and 3 in
the main text, but with randomness added. For each j, we let wj

be an independent random variable drawn from a uniform dis-
tribution with mean = 0 and SD = 0.5. Eqs. 1–3 from the main
text are modified to include a random term as follows:

dθj
dt

¼ sin
�
�θ1 − θj

�þ K1

N

XN
l¼1

ajl sin
�
θl − θj

�þ wj; j in subgroup 1

dθj
dt

¼ sin
�
�θ2 − θj

�þ K1

N

XN
l¼1

ajl sin
�
θl − θj

�þ wj; j in subgroup 2

dθj
dt

¼ K1

N

XN
l¼1

ajl sin
�
θl − θj

�þ wj; j in subgroup 3:

[S12]

Fig. S2 exhibits the same net behavior as in the case with no
randomness; i.e., for r = 0.9 a decision is made for preference 1
and for r = 0.6 there is a compromise solution. The use of
uniform noise is a conservative choice for examining robustness
because compared with Gaussian noise it gives a higher proba-
bility of large random deviations.

Asymmetric Informed Populations. Fig. S3 shows simulations of the
dynamics of Eqs. 1–4 from the main text with the same initial
conditions and parameter values as for the simulations shown in
Figs. 2 and 3, but for an asymmetry in the sizes of the informed
subgroups. Here we let N1 = 4 and N2 = 6. In Fig. S3, Left as in
Fig. 2, r = 0.9 and a decision is made. In Fig. S3, Right as in Fig.
3, r = 0.6 and a compromise is made. Whereas in the simulation
in Fig. 2, the solution is attracted to the manifold M010 where
a decision for preference 1 is made, in the simulation in Fig. S3,
Left with N2 > N1, the solution is attracted to the manifold M001

where a decision for preference 2 is made.
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Fig. S1. The initial direction of motion θj(0) for each j = 1, . . . , N is displayed on the unit circle. The θj(0) are evenly distributed between −78.5° and −58.5° for
the N1 = 5 individuals in subgroup 1 (blue circles), between 71.5° and 91.5° for the N2 = 5 individuals in subgroup 2 (red circles), and between −53.5° and 66.5°
for the N3 = 20 individuals in subgroup 3 (black circles).
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Fig. S2. Simulation of dynamics of Eqs. 1–4 from the main text modified by additive randomness as given by Eq. S12. (Left) r = 0.9; (Right) r = 0.6. The solution
for each individual is shown evolving on the surface of the cylinder; the azimuth describes the angle θj and the vertical axis describes time t. Blue corresponds to
subgroup 1, red to subgroup 2, and black to subgroup 3. Initial conditions and parameter values are the same as in Figs. 2 and 3 in the main text.

Fig. S3. Simulation of dynamics of Eqs. 1–4 from the main text with informed subgroup sizes N1 = 4 and N2 = 6. Initial conditions and all other parameters are
the same as in Figs. 2 and 3 in the main text. (Left) r = 0.9 and the decision is made for preference 2. (Right) r = 0.6 and a compromise is made between the two
preferred directions and slightly closer to preference 2.
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