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Network Reconstruction Using Constraint-Based Modeling. We have
recently developed a computational model building algorithm
(MBA) that enables automatic reconstruction of tissue-specific
metabolic network models by integrating a generic model with
tissue-specific gene expression and proteomic data. The method
was applied to reconstruct a model of liver metabolism in human
that was shown to be able to improve upon metabolic flux pre-
dictions in liver in comparison with a generic human model (1).
The implementation of the MBA is available upon request. The
algorithm derives a consistent metabolic model from a generic
model, based on network integration with various data sources.
First, the method works by assembling an initial core set of re-
actions. Next, it uses a greedy heuristic search that is based on
iteratively pruning reactions from the generic model, taken from
an elimination list created in a random order, yet maintains the
consistency of the pruned model. In each pruning step, a re-
action is removed only if its removal does not prevent the acti-
vation of core reactions. Thus, a minimal set of reactions from
a generic model that are needed to activate the reactions asso-
ciated with this initial core set is added, obtaining a model that is
consistent. That is, each of the core reactions can potentially
carry a nonzero metabolic flux, within a global flux distribution,
satisfying stoichiometric, mass-balance and reaction direction-
ality constraints. To obtain priorities, we demand that reactions
with low priority will appear earlier in the reaction elimination
list, and thus are attempted to be eliminated before higher pri-
ority reactions. Using this scheme, for the global model recon-
struction, (i) relaxation of Arabidopsis reactions directionality
was prioritized over the addition of plant reactions (by assigning
the plant reactions earlier than the reversed Arabidopsis re-
actions in the elimination list), and (if) addition of plant re-
actions was prioritized over the addition of nonplant reactions
(by assigning the nonplant reactions earlier than the plant re-
actions in the elimination list). For the compartmentalized and
tissue-specific models, elimination of transport reactions was
prioritized over elimination of enzymatic reactions (by assigning
the transport reaction earlier than the enzymatic reactions in the
elimination list).

As the resulting model depends on the chosen reaction scan-
ning order, the algorithm is executed repeatedly for a number of
times (1,000 in the results presented here because of observed
convergence following this number of iterations) with different,
random scanning orders. Each run results in a candidate model.
All 1,000 candidate models are then processed to assign the
noncore reactions with scores, representing the fraction of can-
didate models in which they appear. An aggregative model is built
by considering the scores across all runs, starting with the core
reactions and incrementally adding reactions according to their
confidence score until a consistent, viable model is obtained.

Our model reconstruction approach does not assume an ob-
jective function, but rather aims to identify gap-filling reactions
that would enable to activate a set of known core reactions
extracted from KEGG (Kyoto Encyclopedia of Genes and
Genomes) and Aracyc. As part of the definition of the reaction
core, we include a production reaction for each biomass con-
stituent. The inclusion of the biomass production reactions in the
core results in a final model, which enables the production of all
biomass compounds. We do not assume that biomass production
rate is maximized in any step of the model reconstruction method.
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Global Model Reconstruction. Here, the MBA algorithm is used to
address the problem of gap-filling. The core reactions set is
composed of Aracyc and KEGG-Arabidopsis reactions, as well as
literature-based exchange reactions; the generic model is com-
posed of the Plant Metabolic Network (PMN), and KEGG non-
Arabidopsis reactions. Our goal is then to derive the most par-
simonius consistent model, which includes maximal number of
the Arabidopsis-specific reactions, and a set of additional re-
actions from other organisms. Several changes were introduced
to the original MBA algorithm. We allow not only the addition
of generic reactions but also relaxation of irreversibility of ex-
isting core reactions, in case this relaxation leads to a larger set
of activated core reactions. Second, as reactions identified in
plants are more likely to occur in Arabidopsis than reactions
indentified in more distant organisms, each generic reaction is
given an elimination priority according to its source organism. As
a result, the addition of a plant originated reaction is prioritized
over nonplant reaction. Thus, we attempt to bridge network gaps
through (i) relaxation of irreversibilities of the model’s reactions
(first priority), and (ii) addition of enzymatic reactions from
other organisms (second priority). Finally, because Arabidopsis is
an autotrophic organism we maintain this property by defining
a consistent model to be a model that not only satisfies activation
of all core reactions but also allows production of all biomass
compounds under minimal media.

Compartmentalized Model Reconstruction. We use our previously
developed constraint-based modeling (CBM) for systematically
predicting subcellular localization of enzymes in a metabolic
network, based on a priori localization data for a subset of the
enzymes, relying on a parsimony principle of minimal number of
cross-membrane metabolite exchange (2). The input data of this
method is a metabolic network, and the known localization of
a subset of the network enzymes. Known localization data were
collected from the SUBA (the Arabidopsis Subcellular Database)
database (3), allowing experimental localization assignment for
49% of the model’s reactions, aiming to predict the localization
of the remaining reactions. Following the integration of the ex-
perimental data in the metabolic network, the rest of the re-
actions are duplicated to all compartments. To narrow down the
list of potential localizations of these reactions, they are dupli-
cated only to their predicted localizations, based on 10 pre-
diction programs—TargetP (4), MitoProt2 (5), SubLoc (6),
IPSort (7), Predotar (8), MitoPred (9), PeroxiP (10), WolfPSort
(11), MultiLoc (12), and LocTree (13)—in case at least half of
the programs assigned it with some localization. In all other
cases, the reactions were duplicated to all compartments. Trans-
port reactions were added to the network enabling metabolite
exchange between the cytoplasm and all other compartments.
The application of the network localization-prediction method
on the large-scale Arabidopsis network involved the development
of a heuristic variant following a similar approach to the MBA
algorithm. Specifically, the core reaction set was assembled using
experimental localization, and all remaining reactions represent
the generic model. To retain the parsimony principle of a mini-
mal number of cross-membrane metabolite transporters, elimi-
nation of transport reactions was prioritized over elimination of
enzymatic reactions. In this scenario, in case it is possible, a gap
will be filled with an enzymatic reaction rather than by activation
of a transport reaction. Similar to the global model reconstruc-
tion process, we define a consistent model to be a model which
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satisfies activation of all core reactions as well as allowing pro-
duction of all biomass compounds under minimal media.

Tissue-Specific Model Reconstruction. Tissue-specific models were
reconstructed for 10 tissues and developing stages: juvenile
leaves, open flowers, flower buds, 10-d roots, 23-d roots, siliques,
seeds, cotyledons, cell cultures grown in light, and cell cultures
grown in dark. AtProteome, a high-density Arabidopsis proteome
map (14), was integrated to the compartmentalized model to
reconstruct a consistent functional model for each tissue using
the MBA algorithm. In the AtProteome database a protein is
represented by a set of detectable peptides that unambiguously
identify that protein. In our analysis, to reduce noise level,
a protein is assigned to a certain tissue if at least one-third of its
peptides are detected in that tissue. This threshold was de-
termined after careful manual inspection of the dataset and
represents a compromise between reducing noise level but re-
taining high proteomics coverage. For each tissue, a core reac-
tions set was composed of reactions from the compartmentalized
model, identified in that tissue by the proteomics data. The ge-
neric model was composed from the set of the remaining com-
partmentalized model reactions. The MBA algorithm is then
used to find the minimal set of reactions that should be added to
the core reactions set to obtain a consistent model, prioritizing
enzymatic reactions over transport reactions.

Models’ Annotation. In this study we adapt an accepted standard
for annotating metabolic network models, MIRIAM (minimum
quality standard) (15), and provide the relevant annotation in
Dataset S1, as well as within the System Biology Markup Lan-
guage (16) files, enabling model use in common CBM software
packages [e.g., Cobra Toolbox (17), OptFlux (18)]. The anno-
tation tables include common identifiers for reactions and me-
tabolites, metabolites formula, biological description of reactions
and metabolites, reaction stoichiometry, reaction—gene associa-
tions, reaction EC value, metabolic pathway annotations of re-
actions, and confidence scores for reactions. The reported
confidence values clearly discriminate novel predictions from
experimental data. Toward this goal, we define for each reaction
in the model a confidence score [similar to what was done in the
reconstruction of the human network by Duarte et al. (19)]: (i)
“inclusion confidence score” is denoted for each reaction in the
generic model that denotes whether it was included in the core
or predicted as part of the gap-filling procedure; (if) “localization
confidence score” is denoted for each reaction in the compart-
mentalized model, representing whether its subcellular locali-
zation is supported by experiments or computational prediction;
and (iii) “tissue confidence score,” representing whether its tis-
sue assignment is supported by experimental or computational
predictions.

Database Mapping. Mapping between Aracyc, PMN, and KEGG
database compounds was done by matching of the following
features: (i) compound name and synonym, (i) chemical for-
mula, and (iii) compound mapping to other databases (CAS,
KNAPSACK, PubChem). Mapping between reactions was per-
formed by matching of the following features: (i) reaction name
and synonym, (ii) substrates and products participating in the
reaction, (iii) reaction’s EC number, and (iv) genes catalyzing
the reaction. The resulting process can be defined as semi-
automatic, as the extraction and comparison of data between
databases can be largely automated. However, manual curation,
in addition to comparison with Radrich et al. (20), who per-
formed a similar procedure, was also necessary to solve dis-
crepancies between them. The mapping process resulted in 71%
and 55% mapped metabolites and reactions, respectively.
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Cross-Validation Tests. To assess the performance of different
approaches used in the reconstruction process, in each stage we
applied a standard cross-validation test, repeating the relevant
model reconstruction given only four-fifths of the data, aiming to
predict the missing one-fifth. Such analysis tests the ability of the
method to correctly predict the missing, left-out reactions. More
specifically, various random subsets of the full core reaction sets
were given as input, and the reaction-content of the model was
then compared with the left-out core reactions. Hence, for the
global model reconstruction, four-fifths of the known Arabidopsis
reactions were given, aiming to predict the missing one-fifth. For
the compartmentalized model reconstruction, four-fifths of the
known enzyme localizations were given, aiming to predict the
held-out localizations. Finally, for the tissue-model reconstruc-
tion step, four-fifths of each tissue proteomics data were given,
aiming to predict the held-out proteomics data. Hyper-geometric
P value, reflecting the enrichment of the tested reactions in the
model, was computed, as well as precision and recall values for
each stage, testifying for the predictive performance of the re-
construction approaches.

Blast Validation. To evaluate the existence of the added reactions
set in the global reconstructed Arabidopsis network we perform
a Blast search. Two lists of EC numbers are run against the
Arabidopsis whole genome: (i) EC numbers representing re-
actions added to the cellular model by our gap-filling method,
and (/) EC numbers representing reactions not added to the
global model. Each EC is represented by all its ORF sequences
from all available organisms. Accordingly, two e-value lists are
obtained, based on the best e-values obtained for each EC run.
Wilcoxon rank sum test was then applied to evaluate the sig-
nificance of the results.

Simulation of Known Metabolic Functions. To validate the generic
model reconstruction, we followed the quality-assurance method
presented in the reconstruction of the human metabolic network
model by Duarte et al. (19). More specifically, we simulated 176
known metabolic functions found in various cell and tissue types.
These simulations involved the search for a feasible flux distri-
bution that produces a certain metabolite of interest, but allowed
recycled cofactor pairs to enter and leave the system as needed.
Only 2% of the simulations failed and were used to manually
identify several missing reactions required to amend the model.
The list of simulations is provided in Table S3.

Global View of the Models Generated for Different Arabidopsis
Tissues. The network models derived for the various tissues and
cell cultures can be used to examine their metabolic similarity.
Toward this goal, we clustered the tissues and cultures based on
the pathway annotation of their model’s reaction content, and
compared the resulting clustering to that obtained by using solely
the proteomic data used as input for the network reconstruction
procedure (Fig. S1). The results based on the two approaches
showed an expected clustering between the two root tissues and
the two flower tissues. However, the models-based clustering
clearly separated the “dark” tissues and cultures (cell culture-
dark, roots, and seeds) from the “light” (cell culture-light,
flowers, leaves, and siliques), a separation that is not evident in
the proteomic data-based clustering, also reported in ref. 14.

Model-Based Computational Design of Metabolic Engineering Strategies
for Vitamin E Overproduction in Seeds. Here, we applied computa-
tional methods for predicting gene knockouts that are likely to
increase tocopherols (vitamin E) content in Arabidopsis seeds,
essential components of the human diet. More specifically, the
reconstructed seed model was applied to predict reactions, the
deletion of which caused accumulation of tocopherol. WT flux
distribution was generated as described in predicting flux mea-
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surements (main text), with the addition of a positive flux con-
straint, representing 1% of carbon accumulated in biomass in the
Tocopherol O-methyltransferase reaction forcing tocopherol
production. Then, the flux through each enzymatic reaction in
turn was constrained to zero and a feasible flux distribution that
undergoes a minimal redistribution with respect to the flux
configuration of the WT was searched using the minimization of
metabolic adjustment (MOMA) method. To assess robustness of
our predictions several tests are performed.

Robustness to experimental error in flux measurements resulting in
alternative possible WT flux distributions. The experimental error is
taken into account based on the SD of the measured fluxes (21).
Here, we used a variant of Flux Variability Analysis (22) to obtain
a set of 2-K alternative flux distributions for the WT (where K is
the number of experimentally measured fluxes), that are both
consistent with the measured flux rate for central metabolism and
have minimal/maximal possible rates for each measured reaction
in turn, in accordance with the SD in the pertaining measure-
ments (the total sum of absolute flux through all other reactions in
the model is further minimized as in ref. 23). Then, MOMA was
applied to predict flux reroutes (including tocopherol production
rate) following the knockout of each gene in the model, starting
from each of the obtained flux distributions for the WT computed
here. We now report only these gene knockouts showing robust
result of increased tocopherol production for at least a half of the
computed WT flux distributions.

Robustness to additional possible variation in the WT flux distribution.
We apply a Flux Variability Analysis to obtain an additional
set of 2-M alternative flux distributions for the wild-type (where
M is the number of model reactions), that is both consistent with
the measured values for central metabolism and have extreme
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(maximal or minimal) rates in each reaction in the model in turn
(with the total sum of flux through the remaining reactions
minimized). Again, we report only on these gene knockouts
showing robust result for at least a half of the computed WT flux
distributions.

Robustness to the choice of WT tocopherol production rate. Alternative
constraints on the WT tocopherol production rates were exam-
ined, including 0.1% and 0.01% of the carbon uptake rate. We
report only on gene knockouts, showing robust result for all
choices of this threshold.

Following the described robustness tests, a list of 71 reactions, the
knockout of which is predicted to increase tocopherol production
rate by at least 25% (following ref. 24) is presented in Table S6. The
predicted knockouts cluster to several metabolic pathways, some of
which suggest straightforward deletion strategies that involve the
direct blocking of competing pathways, and others suggest novel
potential targets with more complex and nonintuitive relation to
vitamin E metabolism. Indeed, flux changes in chlorophyll, and
tyrosine metabolism, involving competing pathways that use to-
copherol precursors homogentisate acid and phytyldiphosphate,
are known to affect tocopherol accumulation (25, 26), and were
accordingly predicted by the model. In other studies, Arabidopsis
tocopherol-deficient mutants have been shown to have elevation in
fatty acid biosynthesis (27) and gluthatione biosynthesis (28), fur-
ther supporting our model’s predictions. On top of the predictions
described above, which are experimentally supported, additional
knockouts in the purine and pyrimidine metabolism, lysine and
leucine metabolism, TCA cycle, and zeatin metabolism are also
predicted to increase tocopherol level. Further experimental vali-
dation should be performed to reaffirm the correctness of the
predictions.
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a) Proteomics Clustering b)  Model-Based Clustering
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Fig. S1. Metabolic similarity between different tissues and cell cultures based on clustering of (A) tissue-specific proteomics data and (B) the reconstructed
tissue and culture-specific models. Tissue model-based clustering separates the “dark” tissues and cultures from the “light,” a separation that is not evident in
the proteomic data-based clustering.
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