# **Electronic Supplemental Information**

# A. Bioclimatic and habitat variables description

We used a set of moderately high-resolution climate and satellite remote sensing variables to characterize the habitat differences among our sampling areas. Variables were re-aggregated from their native resolutions to 5 km resolution.

# 1-Bioclimatic variables

We used 11 bioclimatic layers from the WorldClim database (Hijmans *et al.* 2005) which are 50-year averages (1950-2000) of annual means, seasonal extremes and degrees of seasonality in temperature and precipitation, and represent biologically meaningful variables for characterizing species range (Nix 1986; Sehgal *et al.* 2011):

- (http://biogeo.berkeley.edu/worldclim/bioclim.htm)
- BIO1 = Annual Mean Temperature
- BIO2 = Mean Diurnal Range (Mean of monthly (max temp min temp))
- BIO4 = Temperature Seasonality (standard deviation \*100)
- BIO5 = Max Temperature of Warmest Month
- BIO6 = Min Temperature of Coldest Month
- BIO12 = Annual Precipitation
- BIO15 = Precipitation Seasonality (Coefficient of Variation)
- BIO16 = Precipitation of Wettest Quarter
- BIO17 = Precipitation of Driest Quarter
- BIO18 = Precipitation of Warmest Quarter
- BIO19 = Precipitation of Coldest Quarter

## <u>2- Altitude</u>

From the Shuttle Radar Topography Mission (SRTM), we acquired elevation data, with mean altitude and standard deviation as variables.

## <u>3- Surface moisture and canopy roughness</u>

From QuikScat (QSCAT;

http://www.scp.byu.edu/data/Quikscat/SIRv2/qush/World\_regions.htm), we obtained monthly raw backscatter measurements that capture attributes related to surface moisture and canopy roughness (Long *et al.* 2001):

a) Qscat Mean: Annual mean Radar Backscatter of year 2001 (*for spatial distribution of surface moisture and roughness (forest structure*)); less negative means higher backscatter.

b) Qscat STD: Annual stdev of Radar Backscatter of year 2001 (*for spatial distribution of seasonality in surface moisture and roughness (forest structure*)) Unit: Decibel

### <u>4- Normalized Difference Vegetation Index</u>

We used two NDVI (Normalized Difference Vegetation Indices; based on monthly files from the year 2001 of MODIS Data (1km resolution)):

- a) NDVI max: Annual maximum NDVI (for spatial distribution of vegetation density)
- b) NDVI range: Annual range NDVI (max-min; *for spatial distribution of seasonal vegetation activity*).

### 5- Percent Tree Cover

We used the vegetation continuous field (Hansen *et al.* 2002) product from MODIS (https://lpdaac.usgs.gov/lpdaac/products/modis\_overview) as a measure of the percentage of tree cover in 2001.

## **B.** Spatial autocorrelation analysis

Spatial autocorrelation statistics measure the effect of proximity of sampling sites on the variable of interest measured at those sites. This effect could either be positive, where nearby sites are more similar to each other than expected by chance, or negative, where nearby sites are more divergent than expected by chance. To determine whether spatial autocorrelation influenced the prevalence of *Plasmodium* parasites among our three main habitats, we calculated Moran's I (Moran 1950) using the spdep package (Bivand et al. 2009) in the R framework (R Development Core Team 2004). In addition we computed the autocorrelation coefficient r (Peakall et al. 2003) in Genalex (Peakall & Smouse 2006) to determine potential autocorrelation within habitat types. Distance classes were set to be at 50km intervals. We ran 999 iterative permutations and 1000 bootstrap replicates to estimate the autocorrelation coefficient r and to determine 95% confidence intervals for both the randomization of spatial relationships and subsampling of the dataset, respectively (Peakall & Smouse 2006). Across all habitat types, we observed no evidence of spatial autocorrelation in prevalence of *Plasmodium* (Moran's I = -0.011, p = 0.8567). Spatial autocorrelation in prevalence of diseases across broad geographic space might be expected, particularly given how distant our sampled habitats were from one another.

To ensure that our observed prevalence values within each of the three habitats were not reflective of pseudo-replication, we also tested for spatial autocorrelation within each of the three habitats separately. Within habitat types there was no indication of spatial autocorrelation in parasite prevalence, except for *Plasmodium* in fynbos at the distance class of 550 km (Fig. S2). We concluded that spatial autocorrelation is virtually absent in our dataset, and as it would not affect subsequent analyses, we did not consider further corrections.

## C. Randomization protocol to test host-parasite assembly rule

The host-parasite assembly rule was investigated using an *ad hoc* randomization test. Based on the prevalence of parasites in each habitat (regardless of host species), the abundance of birds of all species (estimated by sample sizes), and assuming that host-parasite associations are random, a theoretical distribution (based on 10,000 iterations) of the number of species infected by each lineage in each habitat was constructed (= null model). Actual numbers of infected species were then compared to these expectations.

### 1. Randomization protocol

In each habitat, the abundance of each host species *i* was assumed to be proportional to the sample size for the species ( $N_i$ ). The global prevalence of each *Plasmodium* lineage *j* in the habitat was assumed proportional to the number of individual hosts (of any species) infected by *j* (= $I_j$ ). *N* was the overall host sample size ( $N=\Sigma N_i$ ). For each *Plasmodium* lineage *j* for which  $I_j$  was equal to or greater than five, the following protocol was applied:

- a. A host species *i* was randomly drawn.
- b. A random number *x* was drawn from a uniform distribution [0, 1].
- c. The species *i* was considered infected by *j* if  $x < N_i/N$ .
- d. Operations (a) to (c) were repeated  $I_i$  times.
- e. The number of host species infected by *j* was recorded.
- f. Operations (a)-(e) were repeated 10,000 times and a distribution of the number of host species infected by all *Plasmodium* lineages was computed.

This protocol was separately applied to the three habitats.

# 2. Test

A one-sided P-value was computed by comparing the above null distributions with actual numbers of host species infected by each *Plasmodium* lineage in each habitat. P-values were then corrected by Bonferroni method multiplying the raw P-value by the overall number of tests (i.e., summing the tests conducted for the three habitats).

### 3. Results

For a given habitat, randomization tests were conducted only on *Plasmodium* lineages with five infected hosts or more, which yielded 16 separate tests (11 for lowland, 2 for highland and 3 for fynbos). Results indicated that host-parasite associations were not random for ten cases out of eleven for the lowland rainforest habitat (7 remain significant after Bonferroni correction). No significant departure from the null model was found for the two other habitats (however, as  $I_i$  values were smaller in fynbos and

highland, we could not exclude that this result is due to a lack of statistical power in these habitats). Detailed results are presented in Tables 1a, 1b and 1c3 below.

**Table 1a.** Comparisons of the actual numbers of infected species in the lowland rainforest habitat with the null distribution resulting from random association between individual hosts and parasites. P-values were computed as the probabilities that the number of infected species was equal to or smaller than the observed number under the assumption that the null model was true.

| Plasmodium lineage    | pv1      | pv12 | pv13   | pv15   | pv17     | pv2    | pv3    | pv5    | pv8    | pv9      | wa19     |
|-----------------------|----------|------|--------|--------|----------|--------|--------|--------|--------|----------|----------|
| Number of individuals |          |      |        |        |          |        |        |        |        |          |          |
| infected              | 23       | 5    | 8      | 24     | 35       | 10     | 22     | 5      | 6      | 11       | 12       |
| Actual number of      |          |      |        |        |          |        |        |        |        |          |          |
| species infected      | 1        | 2    | 1      | 2      | 1        | 1      | 3      | 1      | 1      | 1        | 1        |
| P-value               | < 0.0001 | ns   | 0.0009 | 0.0005 | < 0.0001 | 0.0003 | 0.0247 | 0.0144 | 0.0043 | < 0.0001 | < 0.0001 |
| Corrected P-value     | < 0.0016 | ns   | 0.0144 | 0.008  | < 0.0016 | 0.0048 | ns     | ns     | ns     | < 0.0016 | < 0.0016 |

**Table 1b**. Comparisons of the actual numbers of infected species in the highland habitat with the null distribution resulting from random association between individual hosts and parasites. P-values were computed as the probabilities that the number of infected species was equal to or smaller than the observed number under the assumption that the null model was true.

| Plasmodium lineage   | pv12 | pv38 |
|----------------------|------|------|
| Number of            |      |      |
| individuals infected | 27   | 5    |
| Actual number of     |      |      |
| species infected     | 8    | 2    |
| P-value              | ns   | ns   |
| Corrected P-value    | ns   | ns   |

**Table 1c**. Comparisons of the actual numbers of infected species in the fynbos habitat with the null distribution resulting from random association between individual hosts and parasites. P-values were computed as the probabilities that the number of infected species was equal to or smaller than the observed number under the assumption that the null model was true.

| Plasmodium lineage   | p15 |   | p16   | pv41 |
|----------------------|-----|---|-------|------|
| Number of            |     |   |       |      |
| individuals infected |     | 8 | 20    | 6    |
| Actual number of     |     |   |       |      |
| species infected     |     | 3 | 4     | 2    |
| P-value              | ns  |   | 0.025 | 0.03 |
| Corrected P-value    | ns  |   | ns    | ns   |

# **D-** Ancestral State Reconstructions and Trait Analyses

We estimated trait evolution (specifically, whether a parasite lineage was a specialist or a generalist) using the BayesTraits computer package (Pagel 1999). While specialist and generalist strategies can be considered extremes along a continuum of possible parasite strategies, we treated these two states as discrete characters as defined by the S<sub>TD</sub> host index of each parasite lineage, mainly to understand difference in rate changes between these character states. To assess the sensitivity of this categorization, we tested several cutoff values used to distinguish specialist and generalist parasites, with highly concordant reconstructions for each (results not shown). A final cutoff value for established lineages corresponding to an S<sub>TD</sub> value of 9: parasite lineages with values below this were considered specialists. The cutoff value 9 represents a parasite that can infect more than 9 species and at least two families. Parasites that can infect several species from the same family are relatively common, and remain family specific;

however parasites that can infect different species from different families are considered as broad generalists (Krizanaskiene *et al.* 2006; Hellgren *et al.* 2009; Beadell *et al.* 2009). The value 9 is therefore a cutoff that is biologically appropriate.

Transitions between evolutionary strategies (specialist vs. generalist) were estimated across 2000 trees used to construct our consensus tree, using Bayes Multistate (Pagel & Meade 2006), under a maximum likelihood framework. Likelihood ratio scores were compared between a model that forced rates between evolutionary strategies to be equal, to a model with no constraints. The model with no constraints had a likelihood score more than two likelihood units (Lh = -16.359) greater than the constrained model (Lh = -21.810), suggesting that a two-rate model better fit our available data.

Ancestor states were reconstructed using the Addnode command in BayesTraits under a maximum likelihood framework, again treating evolutionary strategies as discrete character changes. For each node on our consensus tree, we calculated the proportion of the likelihood associated with each character state (generalist or specialist, Fig. 1).

#### References

- Beadell JS, Covas R, Gebhard C, Ishtiaq F, Melo M, Schmidt BK, Perkins S, Graves GR, Fleischer R (2009) Host associations and evolutionary relationships of avian blood parasites from West Africa. *International Journal of Parasitology*, **39**, 257-266.
- Bivand R, Muller WG, Reder M (2009) Power calculations for global and local Moran's. Computational Statistics and Data Analysis, 53, 2859-2872.

- Hansen MC, DeFries RS, Townshend JRG, Sohlberg R, Dimiceli C, Carroll M (2002)
  Towards an operational MODIS continuous field of percent tree cover algorithm:
  examples using AVHRR and MODIS data. *Remote Sensing of Environment*, 83, 303-319.
- Hellgren O, Perez-Tris J, Bensch S (2009) A jack-of-all-trades and still a master of some:
  prevalence and host range in avian malaria and related blood parasites. *Ecology*,
  90, 2840-2849.
- Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, 25, 1965-1978.
- Krizanauskiene A, Hellgren O, Kosarev V, Sokolov L, Bensch S, Valkiunas G (2006)
  Variation in host specificity between species of avian hemosporidian parasites:
  evidence from parasite morphology and cytochrome B gene sequences. *Journal of Parasitology*, 92, 1319-1324.
- Long DG, Drinkwater MR, Holt B, Saatchi S, Bertoia C (2001) Global Ice and Land Climate Studies Using Scatterometer Image Data. *EOS Transactions AGU*, **82**, 503.
- Moran PAP (1950) Notes on Continuous Stochastic Phenomena. Biometrika, 37, 17–33.
- Nix H (1986) *A biogeographic analysis of Australian elapid snakes*. Atlas of Elapid Snakes of Australia. Australian Government Publishing Service.
- Pagel M (1999) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. *Systematic Biology*, **48**, 612–622.

- Pagel M, Meade A (2006) Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. *American Naturalist*, **167**, 808-825.
- Peakall R, Ruibal M, Lindenmayer DN (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, *Rattus fuscipes. Evolution*, 57, 1182-1195.
- Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes*, 6, 288-295.
- R Development Core Team: R (2004) A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing 2004.
- Sehgal RNM, Buermann W, Harrigan RJ, Bonneaud C, Loiseau C, Chasar A, Sepil I,
  Valkiūnas G, Iezhova T, Saatchi S, Smith TB (2011) Spatially explicit predictions of blood parasites in a widely distributed African rainforest bird. *Proceeding of the Royal Society London B*, 278, 1025-1033.

# Figure S1.

Location of sampling sites in each of the three habitats; lowlands, highlands, and fynbos. Map created in ArcMap 10 (Environmental Systems Resource Institute, ArcMap 10.0 ESRI, Redlands, California).



# Figure S2.

Spatial autocorrelation in *Plasmodium* spp. prevalence in each of the three habitats; lowlands, highlands, and fynbos.



Coordinates and altitude at each sites <sup>(\*)</sup> represents sites where *Plasmodium* infection was found.

| Habitat  | Site                                   | Latitude                       | Longitude                         | Altitude (m) |
|----------|----------------------------------------|--------------------------------|-----------------------------------|--------------|
| Lowland  | Ngoila <sup>(*)</sup>                  | N 2°37'30"                     | F 14°01'23 4"                     | 528          |
| Lowiand  | $7_{\text{obb}} f^{(*)}$               | N 2°30'31"                     | E 13°23'40"                       | 528<br>601   |
|          | $\frac{200001}{\text{Poho comp}} (*)$  | N 2°20'17"                     | E 13 23 49<br>E 13 20 29 16"      | 582          |
|          | CMNP North                             | N 2°46'07 1"                   | E 15 28 10<br>E 10°32'10 5"       | J85<br>185   |
|          | Douni <sup>(*)</sup>                   | N 2 4007.1<br>N 2°58'11''      | E 10 32 10.3                      | 485          |
|          | $\frac{\text{Doum}}{\text{Muono}} (*)$ | N 2°5°50 6"                    | E 11 22 31.1<br>E 12°24'00 5"     | 670          |
|          | $\mathbf{D}_{\mathbf{r}}$              | N 2 36 30.0                    | E 12 24 09.3<br>E 1094(126.2"     | 079          |
|          | Ben (*)                                | N 3 <sup>2</sup> 25'30         | $E 10^{-40} 30.3$                 | 4/1          |
|          | $Mv_{1a}$ (*)                          | N 3°31'03.2″                   | E 10°00'32.9"                     | 48           |
|          | Mokoko                                 | N 4°27′23″                     | E 09°00'33"                       | 127          |
| Highland | Kilimanjaro <sup>(*)</sup>             | S 03°13'                       | E 37°20'                          | 1636         |
|          | North Pare                             | S 03°34'35"                    | E 37°40'20"                       | 1622         |
|          | South Pare                             | S 04°16'00"                    | E 37°56'35"                       | 2243         |
|          | West Usambara <sup>(*)</sup>           | S 04°30'20"                    | E 38°16'05"                       | 1837         |
|          | East Usambara <sup>(*)</sup>           | S 05°02'00"                    | E 38°40'03"                       | 1135         |
|          | Nguru <sup>(*)</sup>                   | S 05°27'00'                    | E 37°28'47"                       | 1429         |
|          | Ukaguru                                | S 06°23'00"                    | E 36°56'20"                       | 1942         |
|          | Rubeho <sup>(*)</sup>                  | S 07°03'00"                    | E 36°38'55"                       | 1650         |
|          | Uluguru <sup>(*)</sup>                 | S 07°10'00"                    | E 37°40'00"                       | 2445         |
|          | Udzungwa <sup>(*)</sup>                | S 07°48'00"                    | E 36°00'00"                       | 2014         |
|          | Livingstone <sup>(*)</sup>             | S 08°04'00"                    | E 36°11'00"                       | 489          |
|          | Mahenge <sup>(*)</sup>                 | S 08°37'00"                    | E 36°43'00"                       | 588          |
|          | Rungwe                                 | S 09°10'                       | E 33°32'                          | 1356         |
|          | Misuku <sup>(*)</sup>                  | S 09°40'                       | E 33°31'                          | 1415         |
|          | Nvika <sup>(*)</sup>                   | S 10°34'                       | E 33°42'                          | 2187         |
|          | Matengo                                | S 11°24'                       | E 34°54'                          | 475          |
|          | Namuli <sup>(*)</sup>                  | S 15°38'                       | E 37°03'                          | 653          |
| Europea  | A lineal North                         | 5 20020,24 12                  | " E 16027,40 04"                  | 1206         |
| rynoos   | Kamiashura                             | S 30 39 24.12<br>S 30°22'22 88 | E 20 32 40.04<br>" E 18º05'57 12" | 1290         |
|          | Tarkastad                              | S 30° 22° 23.88                | " E 26°17'35 88"                  | 1352         |
|          | Beaufort West (*)                      | S 32°02 21.04                  | " E 20°17' 55.08"                 | 887          |
|          | Nova Vita                              | S 32 24 20.10<br>S 32°33'27"   | E 22 45 40.08                     | 827          |
|          | De Rust                                | S 32°35'27<br>S 33°35'49 92    | " E 22°31'36 84"                  | 661          |
|          | Ionkershoek <sup>(*)</sup>             | S 33°59'58"                    | E 22 51 50.04<br>F 18°57'38 14"   | 542          |
|          | Koeberg <sup>(*)</sup>                 | S 33°30'07 75                  | " E 18°26'10 51"                  | 37           |
|          | Cono Doningulo (*)                     | C 2/010/2/ 50                  | " E 10 20 17.31                   | 10           |
|          | Doptobal ND $(*)$                      | S 34 18 34.38                  | E 10 23 07.37                     | 10           |
|          | BONIEDOK NP                            | 5 34 04 40.08                  | $E 20^{-}2/14.04$                 | 04           |

# Table S2.

Number of individual screened ( $N_{Total}$ ) and number of infected individuals ( $N_{inf}$ ) per host species. Diversity of *Plasmodium* lineages and number of birds found with a specific lineage (N) in the lowland rainforest.

| Family        | Species                  | N <sub>Total</sub> | N <sub>inf</sub> | Lineage                                                                      | N                                      |
|---------------|--------------------------|--------------------|------------------|------------------------------------------------------------------------------|----------------------------------------|
| Muscicapidae  | Stiphornis erythrothorax | 14                 | 6                | PV8                                                                          | 6                                      |
| Nectariniidae | Cyanomitra olivaceus     | 189                | 71               | PV12<br>PV13<br>P-CYOL1<br>PV16<br>P-CYOL2<br>PV19<br>PV25a<br>PV25a<br>PV26 | 2<br>8<br>16<br>6<br>35<br>2<br>1<br>1 |
|               | Cinnyris chloropygius    | 57                 | 14               | P36<br>PV12<br>P-CYOL1                                                       | 4<br>3<br>7                            |
| Pycnonotidae  | Andropadus latirostris   | 230                | 59               | PV1<br>PV2<br>PV3<br>PV4<br>PV6<br>P-ANLA2                                   | 22<br>10<br>14<br>1<br>1<br>11         |
|               | Bleda notata             | 30                 | 3                | PV3                                                                          | 3                                      |
|               | Phyllastrephus icterinus | 17                 | 6                | PV3<br>PV4                                                                   | 5<br>1                                 |
| Timaliidae    | Illadopsis rufipennis    | 21                 | 5                | PV5                                                                          | 5                                      |
| Turdidae      | Alethe diademata         | 17                 | 12               | P-ALDI1                                                                      | 12                                     |

# Table S3.

Number of individual screened ( $N_{Total}$ ) and number of infected individuals ( $N_{inf}$ ) per host species. Diversity of *Plasmodium* lineages and number of birds found with a specific lineage (N) in the highland rainforest.

| Family         | Species                | N <sub>Total</sub> | Ninf | Lineages                               | Ν                     |
|----------------|------------------------|--------------------|------|----------------------------------------|-----------------------|
| Muscicapidae   | Modulatrix stictigula  | 40                 | 9    | PV12<br>PV38                           | 5<br>4                |
|                | Sheppardia sharpei     | 40                 | 3    | PV12<br>PV38                           | 2<br>1                |
| Nectariniidae  | Cinnyris moreaui       | 28                 | 1    | PV40                                   | 1                     |
|                | Cinnyris usambaricus   | 29                 | 0    | -                                      |                       |
|                | Cinnyris fuelleborni   | 22                 | 2    | PV12<br>PV25a                          | 1<br>1                |
|                | Cinnyris whytei        | 12                 | 1    | P31                                    | 1                     |
| Platysteiridae | Batis mixta            | 39                 | 3    | PV12<br>PV55                           | 1<br>2                |
| Pycnonotidae   | Andropadus chlorigula  | 24                 | 2    | PV12                                   | 2                     |
|                | Andropadus masukuensis | 94                 | 8    | PV12                                   | 8                     |
|                | Andropadus milanjensis | 46                 | 10   | GRW6<br>P26<br>PV1<br>PV12             | 1<br>1<br>1<br>7      |
| Turdidae       | Alethe fuelleborni     | 32                 | 12   | P15<br>PV12<br>P-ANLA1<br>PV51<br>WA15 | 1<br>5<br>1<br>2<br>3 |

# Table S4.

Number of individual screened ( $N_{Total}$ ) and number of infected individuals ( $N_{inf}$ ) per host species. Diversity of *Plasmodium* lineages and number of birds found with a specific lineage (N) in the fynbos.

| Family        | Species              | N <sub>Total</sub> | Ninf | Lineage               | Ν           |
|---------------|----------------------|--------------------|------|-----------------------|-------------|
| Nectariniidae | Cinnyris chalybeus   | 41                 | 8    | P16<br>PV25a<br>PV41  | 1<br>2<br>5 |
|               | Nectarina famosa     | 85                 | 13   | P15<br>P16            | 1<br>12     |
|               | Anthobaphes violacea | 75                 | 8    | P16<br>PV13<br>PV41   | 5<br>2<br>1 |
| Promeropidae  | Promerops cafer      | 83                 | 4    | P15<br>P16<br>PV56    | 1<br>2<br>1 |
| Pycnonotidae  | Pycnonotus capensis  | 30                 | 8    | GRW11<br>RFF1<br>SGS1 | 3<br>1<br>4 |
| Zosteropidae  | Zosterops capensis   | 69                 | 6    | P15                   | 6           |

| Habitat  | Lineage | Local S <sub>TD</sub> | Global S <sub>TD</sub> |
|----------|---------|-----------------------|------------------------|
| Lowland  | PV1     | 0.001                 | 6.29                   |
|          | PV2     | 0.001                 | 0.001                  |
|          | PV3     | 4                     | 4.43                   |
|          | PV4     | 2                     | 2                      |
|          | PV5     | 0.001                 | 0.001                  |
|          | PV6     | 0.001                 | 0.001                  |
|          | PV8     | 0.001                 | 0.001                  |
|          | P-ANLA2 | 0.001                 | 0.001                  |
|          | PV12    | 2                     | 23.57                  |
|          | PV13    | 0.001                 | 16.57                  |
|          | P-CYOL1 | 2                     | 6                      |
|          | PV16    | 0.001                 | 3.46                   |
|          | P-CYOL2 | 0.001                 | 2                      |
|          | PV19    | 0.001                 | 0.001                  |
|          | PV25a   | 0.001                 | 8.57                   |
|          | PV26    | 0.001                 | 0.001                  |
|          | P36     | 0.001                 | 2                      |
|          | P-ALDI1 | 0.001                 | 4                      |
| Highland | PV1     | 0.001                 | 6.29                   |
|          | PV12    | 9.16                  | 23.57                  |
|          | P-ANLA1 | 0.001                 | 5.16                   |
|          | PV25a   | 0.001                 | 8.57                   |
|          | PV38    | 2                     | 5                      |
|          | PV40    | 0.001                 | 4                      |
|          | PV51    | 0.001                 | 0.001                  |
|          | PV55    | 0.001                 | 0.001                  |
|          | P15     | 0.001                 | 18.43                  |
|          | P26     | 0.001                 | 4                      |
|          | P31     | 0.001                 | 9.21                   |
|          | WA15    | 0.001                 | 10.22                  |
|          | GRW6    | 0.001                 | 3.24                   |
| Fynbos   | PV13    | 0.001                 | 16.57                  |
|          | PV25a   | 0.001                 | 8.57                   |
|          | PV41    | 0.001                 | 3.46                   |
|          | PV56    | 0.001                 | 0.001                  |
|          | P15     | 5                     | 18.43                  |
|          | P16     | 5.167                 | 6.73                   |
|          | GRW11   | 0.001                 | 9.24                   |
|          | RFF1    | 0.001                 | 8.4                    |
|          | SGS1    | 0.001                 | 12.42                  |

**Table S5.**Host specificity indices are given for each *Plasmodium* lineage found in each habitat.

**Table S6.** Distances (Km<sup>2</sup>) between each site in the lowland West Africa habitat.

|            | Ngoila | Zoebef | Bobo camp | CMNP North | Douni | Mvono | Beh   | Mvia  | Mokoko |
|------------|--------|--------|-----------|------------|-------|-------|-------|-------|--------|
| Ngoila     | 0      | 69.2   | 60.9      | 387.5      | 296.2 | 183.7 | 370.8 | 373.5 | 591.9  |
| Zoebef     | 69.2   | 0      | 8.3       | 318.3      | 227.3 | 116.1 | 303.3 | 306.5 | 526.5  |
| Bobo camp  | 60.9   | 8.3    | 0         | 326.6      | 235.6 | 124.1 | 311.3 | 314.2 | 534.1  |
| CMNP North | 387.5  | 318.3  | 326.6     | 0          | 95.6  | 208.6 | 77    | 86.7  | 252.2  |
| Douni      | 296.2  | 227.3  | 235.6     | 95.6       | 0     | 114   | 83.4  | 89.9  | 310    |
| Mvono      | 183.7  | 116.1  | 124.1     | 208.6      | 114   | 0     | 186.9 | 189.9 | 410.3  |
| Beh        | 370.8  | 303.3  | 311.3     | 77         | 83.4  | 186.9 | 0     | 10.2  | 227    |
| Mvia       | 373.5  | 306.5  | 314.2     | 86.7       | 89.9  | 189.9 | 10.2  | 0     | 222.5  |
| Mokoko     | 591.9  | 526.5  | 534.1     | 252.2      | 310   | 410.3 | 227   | 222.5 | 0      |

**Table S7.** Distances (Km<sup>2</sup>) between each site in the highland East Africa habitat.

|               | Kilimanjaro | North Pare | South Pare | West Usambara | East Usambara | Nguru  |
|---------------|-------------|------------|------------|---------------|---------------|--------|
| Kilimanjaro   | 0           | 55.8       | 135.8      | 177.6         | 250.8         | 249.3  |
| North Pare    | 55.8        | 0          | 83         | 123           | 196.1         | 209.4  |
| South Pare    | 135.8       | 83         | 0          | 43.6          | 115.8         | 140.6  |
| West Usambara | 177.6       | 123        | 43.6       | 0             | 74.2          | 138    |
| East Usambara | 250.8       | 196.1      | 115.8      | 74.2          | 0             | 138.9  |
| Nguru         | 249.3       | 209.4      | 140.6      | 138           | 138.9         | 0      |
| Ukaguru       | 354.7       | 322        | 259.3      | 256.4         | 242.9         | 121.6  |
| Rubeho        | 432.5       | 401.6      | 339.6      | 335.5         | 316           | 201.7  |
| Uluguru       | 440.1       | 398.1      | 321.9      | 303.5         | 261.7         | 193.3  |
| Udzungwa      | 529.8       | 503.5      | 446.2      | 444.2         | 425.4         | 309.4  |
| Livingstone   | 553.1       | 524.3      | 463.2      | 458.2         | 434.1         | 325.3  |
| Mahenge       | 602.9       | 568.4      | 499.7      | 487.8         | 452           | 362.6  |
| Rungwe        | 782.6       | 770.2      | 729.2      | 736.2         | 728.4         | 600.9  |
| Misuku        | 830.5       | 816.2      | 772.2      | 777.1         | 765.6         | 641.3  |
| Nyika         | 908.3       | 889.8      | 839.7      | 840.4         | 821.7         | 704.8  |
| Matengo       | 945.8       | 918.7      | 857.3      | 849.9         | 818.1         | 719.1  |
| Namuli        | 1375.6      | 1336.4     | 1260.7     | 1239.8        | 1187.3        | 1129.8 |

|               | Ukaguru | Rubeho | Uluguru | Udzungwa | Livingstone | Mahenge | Rungwe | Misuku |
|---------------|---------|--------|---------|----------|-------------|---------|--------|--------|
| Kilimanjaro   | 354.7   | 432.5  | 440.1   | 529.8    | 553.1       | 602.9   | 782.6  | 830.5  |
| North Pare    | 322     | 401.6  | 398.1   | 503.5    | 524.3       | 568.4   | 770.2  | 816.2  |
| South Pare    | 259.3   | 339.6  | 321.9   | 446.2    | 463.2       | 499.7   | 729.2  | 772.2  |
| West Usambara | 256.4   | 335.5  | 303.5   | 444.2    | 458.2       | 487.8   | 736.2  | 777.1  |
| East Usambara | 242.9   | 316    | 261.7   | 425.4    | 434.1       | 452     | 728.4  | 765.6  |
| Nguru         | 121.6   | 201.7  | 193.3   | 309.4    | 325.3       | 362.6   | 600.9  | 641.3  |
| Ukaguru       | 0       | 82.2   | 119.4   | 189.6    | 205.8       | 250.1   | 487    | 525.1  |
| Rubeho        | 82.2    | 0      | 113.4   | 110.3    | 124.5       | 174.5   | 416.7  | 450.9  |
| Uluguru       | 119.4   | 113.4  | 0       | 197.9    | 192.8       | 192.8   | 507.5  | 535.3  |
| Udzungwa      | 189.6   | 110.3  | 197.9   | 0        | 36.7        | 120.7   | 311.8  | 343.5  |
| Livingstone   | 205.8   | 124.5  | 192.8   | 36.7     | 0           | 84.9    | 315.6  | 342.2  |
| Mahenge       | 250.1   | 174.5  | 192.8   | 120.7    | 84.9        | 0       | 355.7  | 370.6  |
| Rungwe        | 487     | 416.7  | 507.5   | 311.8    | 315.6       | 355.7   | 0      | 57.1   |
| Misuku        | 525.1   | 450.9  | 535.3   | 343.5    | 342.2       | 370.6   | 57.1   | 0      |
| Nyika         | 585.8   | 507.2  | 577.2   | 398.1    | 388.1       | 395.2   | 157.5  | 102.3  |
| Matengo       | 600.3   | 519    | 559.5   | 417.4    | 394.5       | 366.3   | 289.9  | 245.9  |
| Namuli        | 1025.2  | 951.5  | 940     | 875.3    | 842.4       | 776.3   | 812.2  | 764.8  |

|               | Nyika | Matengo |       | Namuli |        |
|---------------|-------|---------|-------|--------|--------|
| Kilimanjaro   | 908.3 |         | 945.8 |        | 1375.6 |
| North Pare    | 889.8 |         | 918.7 |        | 1336.4 |
| South Pare    | 839.7 |         | 857.3 |        | 1260.7 |
| West Usambara | 840.4 |         | 849.9 |        | 1239.8 |
| East Usambara | 821.7 |         | 818.1 |        | 1187.3 |
| Nguru         | 704.8 |         | 719.1 |        | 1129.8 |
| Ukaguru       | 585.8 |         | 600.3 |        | 1025.2 |
| Rubeho        | 507.2 |         | 519   |        | 951.5  |
| Uluguru       | 577.2 |         | 559.5 |        | 940    |
| Udzungwa      | 398.1 |         | 417.4 |        | 875.3  |
| Livingstone   | 388.1 |         | 394.5 |        | 842.4  |
| Mahenge       | 395.2 |         | 366.3 |        | 776.3  |
| Rungwe        | 157.5 |         | 289.9 |        | 812.2  |
| Misuku        | 102.3 |         | 245.9 |        | 764.8  |
| Nyika         | 0     |         | 160.7 |        | 668.6  |
| Matengo       | 160.7 |         | 0     |        | 525.6  |
| Namuli        | 668.6 |         | 525.6 |        | 0      |

**Table S8.** Distances (Km<sup>2</sup>) between each site in the fynbos in South Africa.

|                | Aliwal North | Kamiesburg | Tarkastad | Beaufort West | Nova Vita | De Rust |
|----------------|--------------|------------|-----------|---------------|-----------|---------|
| Aliwal North   | 0            | 811.3      | 155.2     | 408.3         | 529       | 500.1   |
| Kamiesburg     | 811.3        | 0          | 802.2     | 497.5         | 398.8     | 550.3   |
| Tarkastad      | 155.2        | 802.2      | 0         | 334.9         | 461       | 392.8   |
| Beaufort West  | 408.3        | 497.5      | 334.9     | 0             | 125.9     | 133.5   |
| Nova Vita      | 529          | 398.8      | 461       | 125.9         | 0         | 155.5   |
| De Rust        | 500.1        | 550.3      | 392.8     | 133.5         | 155.5     | 0       |
| Jonkershoek    | 804.4        | 410.2      | 718.5     | 395.7         | 280.3     | 332.4   |
| Koeberg        | 833.5        | 365        | 756.4     | 426.6         | 304.3     | 378.5   |
| Cape Peninsula | 867.1        | 437.3      | 779       | 458.4         | 343.4     | 390     |
| Bontebok NP    | 687.4        | 466.9      | 590.2     | 283.6         | 192.2     | 198.4   |

|                | Jonkershoek | Koeberg | Cape Peninsula | Bontebok NP |
|----------------|-------------|---------|----------------|-------------|
| Aliwal North   | 804.4       | 833.5   | 867.1          | 687.4       |
| Kamiesburg     | 410.2       | 365     | 437.3          | 466.9       |
| Tarkastad      | 718.5       | 756.4   | 779            | 590.2       |
| Beaufort West  | 395.7       | 426.6   | 458.4          | 283.6       |
| Nova Vita      | 280.3       | 304.3   | 343.4          | 192.2       |
| De Rust        | 332.4       | 378.5   | 390            | 198.4       |
| Jonkershoek    | 0           | 60.4    | 62.9           | 139.2       |
| Koeberg        | 60.4        | 0       | 73.3           | 192.4       |
| Cape Peninsula | 62.9        | 73.3    | 0              | 193.3       |
| Bontebok NP    | 139.2       | 192.4   | 193.3          | 0           |