Supporting Online Material for

Unsymmetrical hot electron heating in quasi-ballistic nanocontacts

Makusu Tsutsui, Tomoji Kawai & Masateru Taniguchi

The Supplementary Information includes:

1. Supplementary Figures (Fig. S1-S3)

Figure S1. Fabrication procedure micro-thermometer-embedded of mechanically-controllable break junctions. a, Microscale electrodes were fabricated on the polyimide-coated phosphorous bronze substrate using photolithography and radio-frequency magnetron sputtering processes and **b**, After that, AI_2O_3 layers, Au junctions, and Pt subsequent lift-off. thermometers/heaters were patterned in the 100 µm × 100 µm region at the center of the sample substrate using electron beam lithography and radio-frequency magnetron sputtering methods followed by lift-off processes. The sample was then exposed to the isotropic reactive ion etching. As a result, polyimide underneath the thin Au and Pt leads and junctions were removed making some parts of the structure free-standing.

Figure S2. Raw data of R_t (blue) and corresponding $\langle R_t \rangle$ (Black and Red) plotted as a function of V_{Au} . Although R_t fluctuates considerably, the overall dependence on V_{Au} is almost the same as that of $\langle R_t \rangle$.

Figure S3. The current noise σ in the Au single-atom wire plotted as a function of the bias voltage V_{Au} . σ increases in a stepwise manner with $|V_{Au}|$.