Supporting Information

A modular library of small molecule signals regulates social behaviors in *Caenorhabditis elegans*

Jagan Srinivasan^{1§}, Stephan H. von Reuss^{2§}, Neelanjan Bose,² Alon Zaslaver,¹ Parag Mahanti², Margaret C. Ho¹, Oran G. O'Doherty,² Arthur S. Edison,³ Paul W. Sternberg,¹* and Frank C. Schroeder²*

¹Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125; ²Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; ³Department of Biochemistry and Molecular Biology, and National High Magnetic Field Laboratory, University of Florida, Gainesville, FL 32610-0245. [§]These authors contributed equally.

Supporting Methods

1. Calculation of number of molecules of icas#3 in one L4 worm volume at 100 fM.

 V_{YA} : volume of *C. elegans* young adult [1]; c: concentration (100 fM); N_A: Avogadro's number.

 $V_{YA} = 3*10^{6} \ \mu m^{3} = 3*10^{-9} \ L; c = 10 \ fM = 10^{-14} \ M$ $n = V_{YA} * c * N_{A} = 3*10^{-9} \ L * 10^{-14} \ mol*L^{-1} * 6.022*10^{23} \ mol^{-1} = 18 \ molecules.$ Result: there are 18 icas#3 molecules contained in one worm volume of agar at an icas#3 concentration of 10 fM (femtomolar).

2. Synthesis of indole ascarosides

2.1 Synthesis of ascr#9.

(*R*)-hex-5-en-2-ol **2** (32 mg, 0.32 mmol, prepared as described [2]) was coupled to trichloroacetimide **1** (150 mg, 0.3 mmol, [2]) using the conditions described for the synthesis of ascr#6. The resulting glycoside **3** (92 mg, 0.21 mmol) was dissolved in acetone (2 ml) and treated with 2 ml of a 1 M solution of potassium permanganate. After 30 min, the reaction mixture was poured into a mixture of ice-cold saturated aqueous sodium chloride solution (5 ml), acetic acid (0.1 ml), and dichloromethane (5 ml). The organic phase was separated and the aqueous phase extracted with two 5 ml-portions of dichloromethane. The combined organic extracts were dried over sodium sulfate, evaporated to dryness and re-dissolved in a mixture was stirred for 3 h at 70 °C, then cooled to 23 °C and acidified with 0.2 M aqueous hydrochloric acid. The mixture was evaporated to dryness and purified via Combiflash column

chromatography using a methanol-dichloromethane solvent gradient, yielding 15.6 mg (0.063 mmol) of pure ascr#9 as a viscous oil.

Spectroscopic data for ascr#9.

¹H (600 MHz) and ¹³C (126 MHz) NMR spectroscopic data for **ascr#9** were acquired in methanol- d_4 . Chemical shifts were referenced to (CD₂<u>H</u>OD) = 3.31 ppm and (<u>C</u>D₂HOD) = 49.05 ppm. Coupling constants are given in Hertz [Hz]. ¹H NMR (600 MHz, CD₃OD): δ 4.65 (s, 1H), 3.84 (m, 1H), 3.72 (m, 1H), 3.61 (dq, 1H, *J* = 9.4 Hz, *J* = 6.1 Hz), 3.51 (ddd, 1H, *J* = 11.2 Hz, *J* = 9.5 Hz, *J* = 4.5 Hz), 2.43 (m, 2H), 1.95 (dt, 1H, *J* = 13.1 Hz, *J* = 3.5 Hz), 1.71-1.87 (m, 3H), 1.22 (d, 3H, *J* = 6.1 Hz), 1.15 (d, 3H, *J* = 6.1 Hz) ppm; ¹³C NMR (126 MHz, CD₃OD): δ 174.5, 97.3; 71.5, 71.4, 69.9, 68.4, 36.0, 33.5, 31,3, 19.1, 18.1 ppm; ESI-MS (*m/z*): [M–H] 247.2.

2.2 Synthesis of ascr#10.

A stirred solution of ascr#3 (3.2 mg, 10.6 μ mol) [2] in 10 ml of ethanol was hydrogenated using palladium on activated carbon (10% Pd, 1 atm H₂ pressure) at 23 °C for 18 h. After completion, the reaction was evaporated to dryness, and the residue filtered over a short pad of silica using a 1:8 (v/v) mixture of methanol and dichloromethane yielding 3.0 mg (9.9 μ mol) of pure ascr#10.

Spectroscopic data for ascr#10.

¹H (600 MHz) and ¹³C (126 MHz) NMR spectroscopic data for **ascr#10** were acquired in methanol- d_4 . Chemical shifts were referenced to (CD₂HOD) = 3.31 ppm and (CD₂HOD) = 49.05 ppm. Coupling constants are given in Hertz [Hz]. ¹H NMR (600 MHz, CD₃OD): δ 4.64 (s, 1H), 3.78 (m, 1H), 3.71 (m, 1H), 3.63 (dq, 1H, J = 9.3 Hz, J=6.2 Hz), 3.51 (ddd, 1H, J = 11.2 Hz, J = 9.3 Hz, J = 4.6 Hz), 2.27 (t, 2H, J = 7.4 Hz), 1.94 (dt, 1H, J = 13.0 Hz, J = 3.7 Hz), 1.77 (ddd, 1H, J = 13.3 Hz, J = 11.5 Hz, J = 3.0 Hz), 1.61 (m, 2H), 1.56 (m, 1H), 1.46 (m, 1H), 1.32-1.38 (m, 6H), 1.21 (d, 3H, J = 6.2 Hz), 1.12 (d, 3H, J = 6.1 Hz) ppm; ¹³C NMR (126 MHz, CD₃OD): δ 177.7, 97.3, 72.3, 71.0, 69.8, 68.1, 38.1, 38.2, 35.7, 34.9, 30.0, 26.5, 26.0, 19.0, 18.0 ppm; ESI-MS (m/z): [M–H] 303.2.

2.3 Synthesis of icas#1.

Conversion of ascr#1 into the corresponding methyl ester. Ascr#1 (10 mg, 0.036 mmol), prepared using previously described methods [2], was dissolved in a mixture of toluene (1 mL) and methanol (1 mL), and a solution of trimethylsilyldiazomethane (2 M solution in hexane, 50 μ L, 0.1 mmol) was added. After stirring for 20 min at 23 °C, excess trimethylsilyldiazomethane was destroyed by addition of acetic acid (40 μ L) and solvents were removed *in vacuo*, yielding ascr#1 methyl ester (10.3 mg, 0.035 mmol) as a viscous oil. Preparation of a solution of indole-3-carbonyl chloride. A well-stirred suspension of indole-3-carboxylic acid (67.7 mg, 0.42 mmol) in dry dichloromethane (2 ml) containing a small amount of dimethylformamide (20 μ L) was treated with oxalyl chloride (0.84 mmol, 107 mg, 72 μ L) at 0 °C. Following addition to the oxalyl chloride, the mixture was stirred for 20 min at 23 °C, which produced a clear, slightly yellow solution. This solution was evaporated to dryness *in vacuo* at 0.1 Torr to ensure removal of excess oxalyl chloride and subsequently redissolved in 2 ml of dry dichloromethane.

<u>Preparation of icas#1.</u> The sample of ascr#1 methyl ester (10.3 mg, 0.035 mmol) was dissolved in 1 ml of dry dichloromethane and diisopropylethylamine was added (129 mg, 1 mmol). The resulting solution was equipped with an effective stir bar and cooled to -20 °C. Subsequently, the above solution of indole-3-carboxylic acid chloride was added drop wise over a period of 10 min with vigorous stirring. The well-stirred reaction was gradually warmed to -7 °C at which temperature ice-cold saturated aqueous sodium bicarbonate solution (2 ml) was added. The biphasic mixture was allowed to warm to 20 °C and extracted three times with ethyl acetate. The combined ethyl acetate extracts were evaporated *in vacuo* and subjected to column chromatography on silica gel using 0-10% methanol in dichloromethane. Fractions containing the bis-2,4-*O*-(-indole-3-carbonyl)-derivative of the ascr#1 methyl ester were combined, evaporated to dryness and treated with a mixture of 3 ml aqueous 0.5 M lithium hydroxide solution and 7 ml dioxane at 67 °C for 3 h. Subsequently, the reaction mixture was cooled to 23 °C, neutralized by addition of 0.2 M aqueous hydrochloric acid and evaporated *in vacuo*. The residue was purified by HPLC, using the Agilent 1100 Series HPLC system equipped with an Agilent Eclipse XDB C-18 column (25 cm x 9.4 mm, 5 µm particle

diameter). Acetonitrile and 0.1% aqueous acetic acid were used as solvents, increasing the percentage of acetonitrile from 15% at 0 min to 85% at 30 min. Icas#1-containing fractions were evaporated yielding 5.8 mg (0.014 mmol)) of the target compound as a wax-like white solid.

Spectroscopic data of icas#1. ¹H (600 MHz), ¹³C (126 MHz), and HMBC NMR spectroscopic data for **icas#1** in methanol- d_4 . Chemical shifts were referenced to (CD₂HOD) = 3.31 ppm and (CD₂HOD) = 49.05 ppm. Coupling constants are given in Hertz [Hz]; *: interchangeable.

Position	δ ¹³ C [ppm]	δ ¹ H [ppm]	¹ H- ¹ H-coupling constants
1	177.6		
2	35.1	2.35	$J_{2,3} = 7.4$
3	26.6*	1.45-1.70	
4	26.2*	1.45-1.70	
5	38.1	1.45-1.70	
6	72.7	3.86	
7	19.4	1.17	$J_{6,7} = 6.1$
1'	97.7	4.75	
2'	69.6	3.79	
3'	33.5	2.01 (ax)	$J_{3'ax,3'eq} = 13.0,$
			$J_{3'ax,4'} = 11.4, J_{2',3'ax} = 2.9$
		2.21 (eq)	$J_{2',3'eq} = 3.2, J_{3'eq,4'} = 4.7$
4'	70.6	5.12	$J_{4^{\circ},5^{\circ}} = 9.6$
5'	68.8	4.05	$J_{5^\circ,6^\circ} = 6.3$
6'	18.3	1.24	
2''	133.5	7.97	
3''	108.4		
3''-COO	166.5		
3a''	127.3		
4''	121.9	8.02	$J_{4,5,5} = 7.2$
5''	122.7	7.16	
6''	123.8	7.29	
7''	113.1	7.44	$J_{6,7,7} = 7.9$
7a''	138.2		

2.4 Synthesis of icas#3.

Conversion of ascr#3 into the corresponding methyl ester. Ascr#3 (5.2 mg, 0.017 mmol), prepared as described previously [2], was dissolved in a mixture of toluene (1 mL) and methanol (1 mL). To this mixture, a solution of trimethylsilyldiazomethane (2 M solution in hexane, 25 μ L, 0.05 mmol) was added. After stirring for 20 min at 23 °C, excess trimethylsilyldiazomethane was destroyed by addition of acetic acid (30 μ L) and solvents were removed *in vacuo*, yielding ascr#3 methyl ester (5.3 mg, 0.017 mmol) as a viscous oil. Preparation of icas#3. The sample of ascr#3 methyl ester (10.3 mg, 0.035 mmol) was reacted with indole carbonyl chloride as describes above for the preparation of icas#1, using proportionally smaller amounts of all reagents. Purification of the crude reaction products via HPLC using the conditions described above yielded icas#3 (2.3 mg, 5.2 μ mol) as a colorless oil. NMR spectroscopic data are listed below. For copies of the ¹H NMR, HSQC, and HMBC spectra, see section 4 below "Supporting NMR spectra".

Spectroscopic data of icas#3. ¹H (600 MHz), ¹³C (126 MHz), and HMBC NMR spectroscopic data for **icas#3** in methanol- d_4 . Chemical shifts were referenced to (CD₂HOD) = 3.31 ppm and (<u>CD₂HOD</u>) = 49.05 ppm. Coupling constants are given in Hertz [Hz].

Position	δ ¹³ C [ppm]	δ ¹ H [ppm]	¹ H- ¹ H-coupling constants	Relevant HMBC
				correlations
1	173.7			
2	126.7	5.82	J _{2,3} = 15.1	
3	147.8	6.79	$J_{3,4} = 6.9$	C-1, C-4, C-5
4	33.6	2.23		C-2, C-3, C5, C-6
5	29.9	1.54		C-4, C-6
6	27.2	1.51		
7	38.7	1.53		C-5, C-6, C-8
8	73.1	3.83		C-6, C-7, C-9
9	19.9	1.15	$J_{8,9} = 6.1$	C-7, C-8
1'	98.0	4.73		C-3', C-5', C-8
2'	70.1	3.77		C-4'
3'	33.8	1.98 (ax)	$J_{3'ax,3'eq} = 13.0,$	

			$J_{3'ax,4'} = 11.4, J_{2',3'ax} = 2.9$	
		2.19 (eq)	$J_{2',3'eq} = 3.2, J_{3'eq,4'} = 4.7$	C-4'
4'	70.9	5.09	$J_{4^{\circ},5^{\circ}} = 9.6$	C-6'
5'	69.1	4.02	$J_{5^{\circ},6^{\circ}} = 6.3$	C-4'
6'	18.8	1.21		C4', C-5'
2''	133.9	7.94		C-3'', C-3a'', C-7a''
3''	108.8			
3''-COO	167.0			
3a''	127.9			
4''	122.3	7.99	$J_{4,5,5} = 7.4$	C-6'', C-7a'',
				3**-COO
5''	123.0	7.15		C-3a'', C-7''
6''	124.2	7.18		C-4'', C-7a''
7''	113.5	7.42	$J_{6,7,7} = 7.9$	C-3a ^{••} , C-5 ^{••}
7aʻʻ	138.8			

2.5 Synthesis of icas#7.

A standard sample of icas#7 (120 μ g) was obtained from ascr#7 (0.5 mg) [2] as described above for the preparation of icas#1 from ascr#1.

Spectroscopic data of icas#7. ¹H (600 MHz) NMR spectroscopic data for **icas#7** were obtained using methanol- d_4 . Chemical shifts were referenced to (CD₂<u>H</u>OD) = 3.31 ppm. Coupling constants are given in Hertz [Hz].

Position	¹ H [ppm]	¹ H- ¹ H-coupling constants
2	5.84	J _{2,3} = 15.3
3	6.99	$J_{3,4} = 6.8$
4	2.40	
	2.33	
5	1.70	
	1.65	
6	3.91	
7	1.18	J _{6,7} = 6.1

1'	4.75	
2'	3.80	
3'	2.03 (ax)	$J_{3'ax,3'eq} = 13.0, J_{3'ax,4'} = 11.4, J_{2',3'ax} = 2.9$
	2.21 (eq)	$J_{2',3'eq} = 3.2, J_{3'eq,4'} = 4.7$
4'	5.12	$J_{4^{\circ},5^{\circ}} = 9.6$
5'	4.07	$J_{5^{\circ},6^{\circ}} = 6.3$
6'	1.24	
2''	7.97	
4''	8.04	$J_{4^{15},5^{15}} = 7.5$
5''	7.15	
6''	7.16	
7''	7.43	$J_{6,7,7} = 7.9$

2.6 Synthesis of icas#9.

Icas#9 was obtained from ascr#9 as described above for the preparation of icas#1 from ascr#1. NMR-spectroscopic data are in agreement with published data [3].

3. References cited in "Supporting Methods"

- 1. Knight CG, Patel MN, Azevedo RB, Leroi AM (2002) A novel mode of ecdysozoan growth in *Caenorhabditis elegans*. Evol Dev 4: 16-27.
- Pungaliya C, Srinivasan J, Fox BW, Malik RU, Ludewig AH, et al. (2009) A shortcut to identifying small molecule signals that regulate behavior and development in *Caenorhabditis elegans*. Proc Natl Acad Sci USA 106: 7708-7713.
- Butcher RA, Ragains JR, Clardy J (2009) An indole-containing dauer pheromone component with unusual dauer inhibitory activity at higher concentrations. Org Lett 11: 3100-3103.

4. Supporting NMR Spectra

NMR Spectrum 1. Wild-type (N2) metabolome fraction containing *daf-22* dependent indole derivatives (red boxes), central section of dqfCOSY NMR spectrum (CDCl₃, 600 MHz).

NMR Spectrum 2. Synthetic icas#3, ¹H NMR spectrum (CD₃OD, 600 MHz).

NMR Spectrum 3. Synthetic icas#3, ¹H, ¹³C-HSQC spectrum (CD₃OD, 600 MHz).

NMR Spectrum 4. Synthetic icas#3, ¹H, ¹³C-HMBC spectrum (CD₃OD, 600 MHz).

