Supplementary Information

Synthesis and Characterization of Amphiphilic Cyclic Diblock Copolypeptoids from *N*-Heterocyclic Carbene-Mediated Zwitterionic Polymerization of *N*-Substituted *N*-carboxyanhydride

Chang-Uk Lee,^a Thomas P. Smart, ^b Li Guo,^a Thomas H. Epps, III^b and Donghui Zhang^{a,*}

^{a.}Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, LA 70803 ^{b.}Department of Chemical Engineering, University of Delaware, Newark, DE 19716

*corresponding to: <u>dhzhang@lsu.edu</u>

Figure S1. Representative ¹H NMR spectrum of a NHC-mediated polymerization of M_1 at 70 °C in toluene-d₈ showing the formation of cyclic poly(*N*-decyl-glycine) (*c*-PNDG) and unreacted M_1 ([M_1]_0:[NHC]_0 = 50:1, [M_1]_0 = 0.4 M, reaction time = 62 m).

Figure S2. SEC chromatograms of a high MW *c*-PNDG sample ($M_n = 20.4 \text{ kg} \cdot \text{mol}^{-1}$, PDI = 1.20) (—) and its linear analog (*l*-PNDG) ($M_n = 20.8 \text{ kg} \cdot \text{mol}^{-1}$, PDI = 1.09) (---) that were independently prepared from the NHC-mediated and BuNH₂-initiated polymerization of M₂, respectively.

Figure S3. ¹H NMR spectrum of a low MW *c*-PNDG in CDCl₃/CF₃COOD where proton resonances of the NHC are notably visible.

Figure S4. The plot of polymer molecular weights $[M_n: \bullet]$ determined by SEC-MALS-DRI or \blacktriangle ¹H NMR analysis and PDI (•) of *c*-PNDGs versus conversion for the NHC-mediated polymerization of M₂ in THF at 70 °C ($[M_2]_0:[I]_0 = 150:1$ or 50:1, $[M_2]_0=0.4$ M). [Note: aliquots of the polymerization solution ($[M_2]_0:[I]_0 = 150:1$) was taken, filtered and directly injected into SEC columns for the MW determination over the course of reaction].

Figure S5. DSC thermograms of *c*-PNDGs having different molecular weights collected from the first cooling cycle.

$M_{\rm n}$ (kg·mol ⁻¹)	$T_{c,1}$ (°C)	$T_{c,2}$ (°C)	$\Delta H_{c,1} \left(J \cdot g^{-1} \right)$	$\Delta H_{c,2} \left(J \cdot g^{-1} \right)$
7.7	48.8	140.8	37.3	44.6
13.5	47.7	145.6	40.5	50.8
24.3	49.5	139.7	36.7	42.8
63.2	49.8	135.8	37.4	39.8

Table S1. Crystallization temperature and heat of fusion of *c*-PNDGs of various MWs.

Figure S6. WAXS diffractograms of as-prepared *c*-PNDG ($M_n = 7.7 \text{ kg} \cdot \text{mol}^{-1}$, PDI=1.26) without thermal annealing in the solid state at 25, 100 and 250 °C.

Figure S7. SEC-DRI chromatograms of cyclic $poly(N-methyl-glycine)_{105}$ (—) and cyclic $poly(N-methyl-glycine)_{105}$ -*b*-poly(*N*-decyl-glycine)_{15} diblock copolymers (---) prepared from sequential NHC-mediated polymerization of M₂ and M₁.

Figure S8. ¹³C{¹H} NMR spectra of cyclic poly(*N*-Me-glycine)₁₀₅-*b*-poly(*N*-De-glycine)₅₀ (*c*-PNMG₁₀₅-*b*-PNDG₅₀) in CDCl₃/CF₃COOD.

Figure S9. ¹H NMR spectrum of a low MW cyclic poly(*N*-Me-glycine)-*b*-poly(*N*-De-glycine) diblock copolymer (c-PNMG₇₂-b-PNDG₈) in CD₃OD, where proton resonances of the NHC are notably visible.

Figure S10. Turbidity measurements of both linear and cyclic block copolypeptoid solutions in methanol over the first 2 d after preparation.

Figure S11. SEC-DRI chromatograms of cyclic $poly(N-methyl-glycine)_{105}$ -*b*-poly(*N*-decyl-glycine)_{15} obtained after 17 d in room temperature methanol (---) and the original sample (—).

Figure S12. ¹H and ¹³C{¹H} NMR spectra of 2-(*n*-decylamino)acetic acid hydrochloride (1) in DMSO-d₆.

Figure S13. ¹H and ¹³C{¹H} NMR spectra of 2-(N,N-tert-butoxycarbonyl-n-decylamino)acetic acid (**2**) in CDCl₃.