Supplemental Materials

Supplemental figure legends

Supplemental Figure 1. Inserts in four isolated plasmids (MST5-4, MST5-5, MST15-13 and MST15-34) conferring RNA tolerance.

Open box, ORF positions; Blank regions within boxes, introns.

Supplemental Figure 2. Deduced amino acid sequence alignment of PBG-D from *A*. *nidulans* (A.n.PBG-D), *S. cerevisiae* (S.c.PBG-D) and *E. coli* (E.c.PBG-D).

Sequences were aligned using ClustalW. Black and white boxes, identical and similar amino acids, respectively.

Supplemental Figure 3. Southern blot analysis of ALC and Δfhb gene disruptants. Restriction enzymes used to digest the genomic DNAs from parent and mutant strains are indicated. PalcA indicates the gene promoter of *alcA*. Black bars represent position of hybridization probes. P, parental strains; R, recombinant strains. Predicted size shifts are indicated in corresponding Southern blots.

Supplemental Figure 4. Growth of WT and ALC strains.

Colonies appeared on MM agar medium (pH 5.5) containing 25 mM NaNO₂ after incubating WT and ALC conidia at 37°C for 48 h. Proline (Pro), methionine (Met) and ergosterol (Erg) were added to the medium at final concentrations of 5 mM, 10 mM, 10 mM, and 10 μ g mL⁻¹, respectively.

Fig. S1

A.n.PBG-D S.c.PBG-D E.c.PBG-D	MGPETLHIG MLDNVLRIA	GRKSKLAVIQ TRQSPLALWQ2	SNHVLKLIEE AHYVKDKLMA	KYPDYDCKVF7 SHPGLVVELVE	ILQTLGDQIQE PMVTRGDVILI	SKPLYSFGGKA DTPLAKVGGKG	LWTKELEDHL
A.n.PBG-D S.c.PBG-D E.c.PBG-D	YHDDPSKKL LENRA	DLIVHSLKDMI DIAVHSMKDVI	1 L PT SCTL PTLL PE GFEL PVEF PQ GLGL	10 GPMMKREDSRI GGITKRVDPTI VTICEREDPRI	20 GLVIKKGLPM CLVMPFYSAY AFVSNNY	30 NMSLAEMPAGS (KSLDDLPDGG (DSLDALPAGS	40 VVGTSSIRRT IVGTSSVRRS IVGTSSLRRO
A.n.PBG-D S.c.PBG-D E.c.PBG-D	50 AQLARKYPH AQLKRKYPH CQLAERRPD	60 LKVMD VRGNI LKFES VRGNI LIIRS LRGNV	70 GTRLAKLDAE CTRLOKLDDP GTRLSKLDNG	80 DSP Y TC LILA KSP Y QC IILA E Y DA IILA	90 AGLLRLGLGI SAGLMRMGLEN ZAGLKRLGLES	IOO I RIYQYLDSRN RITQRFHS RIRAALPP	AGMLY <mark>AVGQG</mark> DTMYH <mark>AVGQG</mark> EISLP <mark>AVGQG</mark>
A.n.PBG-D S.c.PBG-D E.c.PBG-D	120 ALGIEIRKG ALGIEIRKG AVGIECRLD	130 DKAMEDILNT DTKMMKILDE DSRTRELLAA	140 IGHK ETT FAC ICDL NAT ICC LNHH ETA LRV	150 LAERSLLRTLE LSERALMRTLE TAERAMNTRLE	LGO CGCSAPLGVE CGCSVPIGVE CGCQVPIG	LTO, 1 StewiQdTngs SkynEetk SyaElIdg.	80 SKLRMRSVV .KLLLKAIVV .EIWLRALVG
A.n.PBG-D S.c.PBG-D E.c.PBG-D	190 SVDGSEHAE DVEGTEAVE APDGSQIIR	200 VEIDGTVDSP DEIEMLIENVI GERRGAI	210 QSAEEFGVT KEDSMACGKI QDAEQMGIS	220 VAKALVNEGA LAERMIADGA LAEELLNNGA	230 GKILSEIQQNE KKILDEINLDE REILAEVYNGI	240 RQL <mark>K</mark> VPVSEST R.I K DAP A	

Fig. S2

Fig. S4

Supplemental Table S1. Primers used in this study.

Primer name	Sequence $(5' \rightarrow 3')$	Restriction enzyme
<i>pyrG</i> -F	TAT <u>CCCGGG</u> GAATTCGATACCTGTCGAAAG	SmaI
<i>pyrG</i> -R	CATA <u>CCCGGG</u> TCAGTGCTTGTCTACCAG	SmaI
argB-F	CCGG <u>GGATCC</u> AAGCTTTATTTCGCGGTTTTTTGG	BamHI
<i>argB</i> -R	ATTA <u>GCATGC</u> GTCGACCTACAGCCATTGC	SphI
$\Delta hemC-1$	GG <u>CTGCAG</u> CGGGATTTCATGCGATA	PstI
$\Delta hemC-2$	GG <u>GATATC</u> GTTGAGAGGCGTTTCT	EcoRV
$\Delta hemC-3$	GG <u>CCGCGG</u> GGCAGCCTTCGATTTTAA	SacII
$\Delta hemC-4$	GG <u>GCGGCCGC</u> CTCTTGGGTTTGCTTCTT	NotI
$\Delta fhbA-1$	GG <u>GATATC</u> ATCTCCGTCACGAAGAAA	EcoRV
$\Delta fhbA-2$	G <u>CTGCAG</u> CAACCTTATCAGCG	PstI
$\Delta fhbA-3$	CC <u>TCTAGA</u> TTTCATCCACGGCGC	XbaI
$\Delta fhbA-4$	GG <u>GCGGCCGC</u> GGTCGCAAACAAGTTGT	NotI
$\Delta fhbB-1$	CTCG <u>GAATTC</u> CCAGGAACAGATTAAAACC	EcoRI
$\Delta fhbB-2$	TGACT <u>GTCGAC</u> ATTAATCAGCGGAGCTGGGC	SalI
$\Delta fhbB-3$	TAGA <u>GCATGC</u> GCCCTTTGGTGATTTTGTGC	SphI
$\Delta fhbB-4$	GGCC <u>CTGCAG</u> TGTTCCGAATTACCTCGAAC	PstI
alcA-F	GG <u>GCGGCCGC</u> GGGGCGGAAATTGACA	NotI
alcA-R	GCGGGGTTTGAGTTGTCATTTTGAGGCGAGGTGATAGGAT	
hemC-F	ATGACAACTCAAACCCCGC	
hemC-R	GG <u>CCGCGG</u> AAGAAACAAATGACGTTGTC	SacII
ALC-probe-F	TTCTACAGCGGAACCGCCTC	
ALC-probe-R	AAGGTTGTCTCCTTATGACC	
∆ <i>fhbA</i> -probe-F	GAGCTGTCCATCACGGGAGC	
∆ <i>fhbA</i> -probe-R	GTTGATCGGTCGGTTCCCAC	
<i>∆fhbB</i> -probe-F	CAGCCGCGACAGTACAGTCTG	
<i>∆fhbB</i> -probe-R	TCAACGGCCCGCCTTCGGCG	
q-RT-hemC-F	CCAGTACTTGGACTCAAGGAAC	
q-RT-hemC-R	CTCAGCATGTTCACTACCATC	
q-RT-fhbA-F	CATGGCACCACCATCACCAAGG	
q-RT-fhbA-R	GGTTGTCGATATAGCTCGCG	
q-RT-fhbB-F	TATGCGACCAGTGCTCTC	
q-RT <i>-fhbB</i> -R	CGCTTGGTGCGAGGAGTTG	
q-RT-niiA-F	AACAGGCGGCAGAAGATCG	
q-RT-niiA-R	TGCGGTGCTCGAAGTACGAC	
q-RT-hemC-F	CCAGTACTTGGACTCAAGGAAC	
<i>q-RT-hemC-</i> R	CTCAGCATGTTCACTACCATC	
q-RT-actA-F	GAAGTCCTACGAACTGCCTGATG	
q-RT-actA-R	AAGAACGCTGGGCTGGAA	

Sequences corresponding to restriction enzymes are underlined.