Primer	Sequence Added restriction			
RT-qPCR				
ro01338				
Forward primer	CACCGTTCCAGGACTTCATC			
Reverse primer	TGTGCATGTCGAGTTCGTG			
Probe	CGTGACCAGATGTCGCCCCA			
ro02797				
Forward primer	ATCGCTCCGTTCAACTTCC			
Reverse primer	AGAATCACTGAGTTGCCCAG			
Probe	ATCCTCTCGATCCGCGCAGTG			
ro02845				
Forward primer	GTACGCCGTTGTCCTTCG			
Reverse primer	GAAAACTGTTGCACGGACTG			
Probe	ACGCTGAGGACCGAACGCTT			
ro02986				
Forward primer	mer CACTGCCATTGGGTGAATTC			
Reverse primer	CCACATCAACGACCAGACC			
Probe	AATCGCGTGCCGTTGCCG			
ro04165				
Forward primer	GAGCCGATCCTGTTCTGG			
Reverse primer	CCGTAGGTGAAACCGTGATAG			
Probe	CCGCTACCCGCTGTCCGAA			
DNA polymerase IV				
Forward primer	TGAGCAAGTCCGTGTTCG			
Reverse primer	CGCAGTCCCTCGCAATAG			
Probe	ACGCCTCGTCCATCGACAGTTG			
Cloning				
ro02797 Forward	TATATAT <u>CATATG</u> AGCCTGCTCGACATCGACTGG	NdeI		
ro02797 Reverse	TATAT <u>AAGCTT</u> CAGAACGGGTACTGCTGAATCGGC	HindIII		
ro02845 Forward	CCTCCT <u>CATATG</u> AGCATGTTCACTGTCACTGTCA	NdeI		
ro02845 Reverse	CCTCT <u>GGATCC</u> TCAGGGAAGTTCGACGACGAG	BamHI		
ro02986 Forward	GGGGG <u>CATATG</u> ACTGACCTTCTCGGCGGC	NdeI		
ro02986 Reverse	CCGC <u>AAGCTT</u> CAGAACGGGAACTGTTGGGCCA	HindIII		
ro04163 Forward	CCTTCCT <u>CATATG</u> CCTATCCCACCCGAACC	NdeI		
ro04163 Reverse	CCTCT <u>GGATCC</u> TCACAGTTCCAGCGTCAGAC	BamHI		

2 Table S1. The oligonucleotides used in this study.

1

ro04165 Forward	TTTCTCTCATATGTCCACGATCGCCCGCAACC	NdeI
ro04165 Reverse	TTCTT <u>AAGCTT</u> CAGCCCACCGCCGCGGTGACG	HindIII
Gene knockout		
"Up" fragment of <i>vdh</i>		
2986_F1	TTTT <u>AAGCTT</u> GGTGCTGAGCCGCAGCCCCC	HindIII
2986_F2	TTTT <u>TCTAGA</u> GGTGACCCAGTTGCCGTCG	XbaI
"Down" fragment of vdh		
2986_R1	GGTG <u>TCTAGA</u> TTCGGAACGCAGAGCAGC	XbaI
2986_R2	TTTT <u>GGATCC</u> GAGCACGAGTACCGGGTTC	BamHI
"Up" fragment of vanA		
4165_F1	CTCTT <u>TCTAGA</u> CCGCCCTGGACCAACTCGCC	XbaI
4165_F2	CTCTT <u>GTTAAC</u> GGATCGGCTCCTCGCAGATGG	HpaI
"Down" fragment of vanA		
4165_R1	CTCCT <u>GTTAAC</u> ACCAGGAGCTGTCGATCAACATC	HpaI
4165_R2	CTCCT <u>AAGCTT</u> CCGCAGCAGTAGACGAGGGTG	HindIII
Screening knockout mutant		
2986M1	CGGAGGGAGTACTGCACGTAC	
2986M2	GGTGTTCGTTGATGAGGGGG	
4165M1	GGATTCCCCCGACTACACCGTGG	
4165M2	GAGGAACGTCGTGACGGCGTCG	

Strain / plasmid	Relevant genotype/comments	Source
Plasmids		
pET28a+	pT7 promoter, <i>lac1</i> , Kan ^R	Novagen
pETvanABC	pET28a+ with vanABC cloned into NdeI and BamHI sites	This study
pETvdh	pET28a+ with vdh cloned into NdeI and HindIII sites	This study
pETvanA	pET28a+ with vanA cloned into NdeI and HindIII sites	This study
pETvanB	pET28a+ with vanB cloned into NdeI and BamHI sites	This study
pET2797	pET28a+ with ro02797, cloned into NdeI and HindIII sites	This study
pET2845	pET28a+ with ro02845 cloned into NdeI and BamHI sites	This study
pK18mobsacB	5.7-kb mobilizable suicide vector used for triple ligation; <i>sacB alphII</i>	(5)
pK18vanA	pK18 <i>mobsacB</i> containing 2.0-kb fusion PCR fragment flanking $\Delta vanA$; used to make strain RHA046	This study
pK18vdh	pK18 <i>mobsacB</i> containing 2.0-kb fusion PCR fragment flanking $\Delta v dh$; used to make strain RHA045	This study
pTipII	Rhodococcal expression vector; <i>tipA</i> promoter	(2)
pTipvanA	vanA cloned into pTipII; used for complementation test	This study
pTipvdh	vdh cloned into pTipII; used for complementation test	This study
<u>Strains</u>		
E. coli		
DH5a	F ⁻ λ ⁻ endA1 hsdR17 hsdM ⁺ supE44 thi-1 recA1 gyrA96 relA1 Δ (argF lacZYA)U169 \notin 80d Δ (lacZ)M15; Used to clone and propagate DNA.	Bethesda Research
S17-1	<i>recA1 pro thi</i> ; has the <i>tra</i> genes from plasmid RP4 integrated in the chromosome; Donor strain for conjugation	(4)
BL21(DE3)	hadS gal(λcIts857 indI Sam7 nin5 lacUV5-T7 gene1)	(1)
Rhodococcus jostii		
RHA1	Wild-type, Cm ^R	
RHA005	Mutant derivative of RHA1 with <i>pcaL</i> replaced with Apra ^R	(3)
RHA045	Mutant derivative of RHA1 with vdh disrupted.	This study

0 1 able 52. Strains and plasmids used in this stu	6	Table S2.	Strains	and p	lasmids	used i	n this	study
--	---	-----------	---------	-------	---------	--------	--------	-------

7

8	Gene cloning and protein expression -DNA fragments containing each of vdh, ro02797,
9	ro02845, vanACB, vanA, and vanB were amplified by PCR according to standard procedures
10	using RHA1 genomic DNA as a template and the respective primers indicated in Table 1.
11	The amplicons were cloned into pET28a+ vector using the endonucleases indicated in Table
12	2, and their nucleotide sequences were verified. The resulting plasmids, listed in Table 2,
13	were freshly transformed into <i>E. coli</i> BL21 to facilitate the production of recombinant protein.
14	Individual colonies were used to inoculate 5-mL of LB medium containing 50 $\mu\text{g/mL}$
15	kanamycin. Cultures were grown overnight at 37°C and then used to inoculate 200 ml of LB
16	medium containing 50 $\mu\text{g/mL}$ kanamycin. These cultures were incubated at 37°C until they
17	reached an OD_{600} of ~0.6, at which point the temperature was lowered to 16°C. After 30 min,
18	expression was induced by the addition of 100 mg/L IPTG and the cultures were incubated
19	overnight. The cells were harvested by centrifugation at 4000 $x g$ for 10 min and were then
20	stored at -20°C.
21	Protein production was verified using 12% SDS-PAGE analysis of whole cells. Polypeptides
22	corresponding to Vdh, Ro02797, Ro02845, VanA and VanB were detected in cells containing
23	pETvdh, pET2797, pET2845, pETvanA and pETvanB, respectively. In cells containing
24	pETvanABC, only polypeptide corresponding to VanA was detected.

25

26 **References for supplemental material**

- Gust, B., G. L. Challis, K. Fowler, T. Kieser, and K. F. Chater. 2003. PCR-targeted
 Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the
 sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100:1541–1546.
- Nakashima, N., and T. Tamura. 2004. Isolation and Characterization of a Rolling-Circle-Type Plasmid from *Rhodococcus erythropolis* and Application of the Plasmid to Multiple-Recombinant-Protein Expression. J. Bacteriol. **70**:5557-5568.
- 33 3. Patrauchan, M.A., C. Florizone, M. Dosanjh, W.W. Mohn, J. Davies, and L.D. Eltis.
- 2005. Catabolism of benzoate and phthalate in *Rhodococcus* sp. strain RHA1:
 redundancies and convergence. J. Bacteriol. 187:4050-4063.
- Simon, R., V. Priefer, and A. Pühler. 1983. A broad-host-range mobilization system for
 in vivo genetic engineering: transposon mutagenesis in gram negative bacteria.
 Biotechnology 1:784–791.
- Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. and Pühler, A 1994.
 Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of
- 42 *Corynebacterium glutamicum*. Gene **145**: 69-73.