| ENZ  | Genotype                                                               | Source (reference) |
|------|------------------------------------------------------------------------|--------------------|
| 535  | F <sup>-</sup> rph-1 ilvG rfb-50 phnE                                  | MG1655 (21)        |
| 985  | As 535 but <i>rpoS359</i> ::Tn10                                       | (21)               |
| 1698 | As 535 but <i>rpoS::kan</i>                                            | (11)               |
| 1755 | As 535 but $\Delta(phoB-R)kan$                                         | (21)               |
| 1791 | As 535 but $\Delta lacY$ ::kan                                         | P1.JW334           |
| 1797 | As 535 but <i>lacY</i> ::Tn10                                          | This study         |
| 1901 | Evolved 535 RpoS <sup>-</sup>                                          | This study         |
| 1902 | Evolved 535 Glg                                                        | This study         |
| 1903 | Evolved 535 $\text{Glg}^+$                                             | This study         |
| 1904 | Evolved 535 Glg <sup>+</sup>                                           | This study         |
| 1905 | Evolved 535 Glg <sup>+</sup>                                           | This study         |
| 1944 | As 535 but $\Delta rpoS::kan$                                          | P1.JW5437          |
| 1946 | As 1944 (535 Δ <i>rpoS</i> ) Km <sup>s</sup>                           | This study         |
| 1984 | As1905 but $\Delta lacY::kan$                                          | P1.JW334           |
| 2000 | As 1901 but $\Delta lac Y$ :: kan                                      | P1.JW334           |
| 2001 | As 1902 but $\Delta lac Y$ :: kan                                      | P1.JW334           |
| 2002 | As 1903 but $\Delta lac Y$ :: kan                                      | P1.JW334           |
| 2005 | As 1944 (535 Δ <i>rpoS::kan</i> ) but <i>cysC</i> 95::Tn10             | This study         |
| 2015 | As 1901 but $\Delta(phoB-R)kan$                                        | P1.1755            |
| 2020 | As 1946 (535 $\Delta rpoS$ ) but $\Delta lacY$ ::kan                   | P1.JW334           |
| 2039 | As 535 but <i>rpoS</i> 819                                             | This study         |
| 2041 | As 535 but <i>rpoS1901</i>                                             | This study         |
| 2063 | As 2039 (535 <i>rpoS819</i> ) but Δ <i>lacY</i> :: <i>kan</i>          | P1.JW334           |
| 2065 | As 2041 (535 <i>rpoS1901</i> ) but Δ <i>lacY</i> :: <i>kan</i>         | P1.JW334           |
| 2075 | As 535 but $\Delta phoB$ ::kan                                         | P1.JW389           |
| 2079 | As 1901 but $\Delta phoB$ ::kan                                        | P1.JW389           |
| 2084 | As 2075 (535 $\Delta phoB$ ) Km <sup>s</sup>                           | This study         |
| 2255 | As 535 but $\Delta proP$ ::kan MePn <sup>-</sup>                       | This study         |
| 2256 | As 535 but $\Delta proP$ ::kan MePn <sup>+</sup>                       | This study         |
| 2258 | As 1946 (535 $\Delta rpoS$ ) but $\Delta proP$ ::kan MePn <sup>-</sup> | This study         |
| 2259 | As 1946 (535 $\Delta rpoS$ ) but $\Delta proP$ ::kan MePn <sup>+</sup> | This study         |
| 2260 | As 1901 but $\Delta pstA$ ::kan                                        | P1.JW3704          |
| 2263 | As 2041 (535 $rpoS1901$ ) but $\Delta proP$ ::kan MePn <sup>+</sup>    | This study         |
| 2265 | As 2041 (535 $rpoS1901$ ) but $\Lambda proP$ ::kan MePn                | This study         |
| 2268 | As 1901 but $\Lambda phnK$ : kan GPS <sup>+</sup> MePn <sup>-</sup>    | P1.JW5727          |
| 2271 | As 1901 but $\Delta phnE^{}kan$                                        | P1 JW4065          |
| 2274 | As 2271 (1901 $\Lambda phnE$ : kan) Km <sup>s</sup>                    | This study         |
| 2277 | As 2274 (1901 $\Lambda phnE$ ) but $\Lambda pstA$ ··kan                | P1.JW3704          |
| 2278 | As $2274$ (1901 AphnE) but AphoE kan                                   | P1 JW231           |
| 2282 | As 1901 but $lac Y$ :: Tn $10$                                         | P1.1797            |

TABLE S1. E. coli K-12 strains





FIG. S1. Adaptive evolution of *E. coli* K-12 under Pi starvation conditions. Strain ENZ535 was diluted 1:50 into fresh Pi-limiting medium every 9 days of incubation and incubated further for up to 36 days. Five independent experiments (I-V) are shown. (A) The values (CFU/ml) for experiment (I) are from Fig. 1. The numbers of colonies (total 6) exhibiting either an RpoS<sup>-</sup>, Glg<sup>-</sup>, or Glg<sup>+</sup> phenotype are indicated below the figure. (B and B') For the experiments (II-V), the values for the subcultures #3 and #4 are shown in panels B and B', respectively. The pH of the spent media and the number of colonies (total 12) exhibiting either an RpoS<sup>-</sup>, Glg<sup>-</sup>, or Glg<sup>+</sup> phenotype are indicated below the figures. Strains ENZ1901 (RpoS<sup>-</sup>), ENZ1902 (Glg<sup>-</sup>), ENZ1903 (Glg<sup>+</sup>) in experiment V, and strains ENZ1904 and ENZ1905 (Glg<sup>+</sup>) in experiments II were isolated on day 27 of incubation in subcultures #4.



FIG. S2. The evolved strain ENZ1901 grows in a culture of *E. coli* K-12 starved for Pi. The strains tested as a minority in mixed cultures were grown as monocultures in Pi-limiting medium for 1 day, diluted  $10^3$ -fold, added (0.5 ml) into 50 ml of 1-day-old cultures of the ancestral strain ENZ535 in Pi-limiting medium, and incubated further for 8 days. (A) Evolved strain ENZ1901 (Km<sup>r</sup>: ENZ2000) as a minority ( $\blacktriangle$ ,  $\blacktriangledown$ ,  $\blacklozenge$ ) with ancestral strain ENZ535 (Tc<sup>r</sup>: ENZ1797) as a majority ( $\triangle$ ,  $\nabla$ ,  $\diamondsuit$ ), and evolved strain ENZ1901 (Tc<sup>r</sup>: ENZ2282) as a minority ( $\bigcirc$ ,  $\square$ ) with ancestral strain ENZ535 (Km<sup>r</sup>: ENZ1791) as a majority ( $\bigstar$ ,  $\blacktriangledown$ ) with ancestral strain ENZ535 (Km<sup>r</sup>: ENZ1791) as a minority ( $\bigstar$ ,  $\blacktriangledown$ ) with ancestral strain ENZ535 (Km<sup>r</sup>: ENZ1791) as a minority ( $\bigstar$ ,  $\blacktriangledown$ ) with ancestral strain ENZ535 (Km<sup>r</sup>: ENZ1791) as a minority ( $\bigstar$ ,  $\bigtriangledown$ ) with ancestral strain ENZ535 (Km<sup>r</sup>: ENZ1791) as a minority ( $\bigstar$ ,  $\bigtriangledown$ ) with ancestral strain ENZ535 (Tc<sup>r</sup>: ENZ1797) as a majority ( $\triangle$ ,  $\bigtriangledown$ ).



FIG. S3. Growth of the evolved strain ENZ1901 in mixed culture. The evolved strain ENZ1901 (Km<sup>r</sup>: ENZ2000) was grown for 1 day in Pi-limiting medium, serially diluted ( $10^1-10^5$ -fold) ( $\nabla$ ,  $\triangle$ ,  $\bullet$  and  $\blacktriangle$ ,  $\Box$ , O), and 0.5 ml samples were added into 50 ml of 1-day-old cultures of the ancestral strain ENZ535 (Tc<sup>r</sup>: ENZ1797) ( $\bullet$ ) in Pi-limiting medium, and incubated further for 8 days.



FIG. S4. Evolved strains in mixed culture. The evolved strains were grown as monocultures in Pi-limiting medium for 1 day, diluted  $10^3$ -fold, added (0.5 ml) into 50 ml of 1-day-old cultures of the ancestral strain ENZ535 (Tc<sup>r</sup>: ENZ1797) (open symbols) in Pi-limiting medium, and incubated further for 8 days. (A) Evolved strain ENZ1902 (Glg<sup>-</sup>) (Km<sup>r</sup>: ENZ2001) ( $\blacktriangle$ ). (B) Evolved strain ENZ1903 (Glg<sup>+</sup>) (Km<sup>r</sup>: ENZ2002) ( $\bigstar$ ,  $\blacktriangledown$ ,  $\blacklozenge$ ). (C) Evolved strain ENZ1905 (Glg<sup>+</sup>) (Km<sup>r</sup>: ENZ1984) ( $\bigstar$ ,  $\blacktriangledown$ ).



FIG. S5. ENZ535 carrying the *rpoS*1901 allele alone does not grow in a mixed culture containing the ancestral strain ENZ535 in excess. The re-constructed strains (solid symbols) were grown as monocultures in Pi-limiting medium for 1 day, diluted  $10^3$ -fold, added (0.5 ml) into 50 ml of 1-day-old cultures of the ancestral strain ENZ535 (Tc<sup>r</sup>: ENZ1797) in Pi-limiting medium ( $\triangle$ ,  $\nabla$ ), and incubated further for 8 days. (A) ENZ535 carrying the *rpoS*1901 allele (Km<sup>r</sup>: ENZ2065) ( $\blacktriangle$ ,  $\blacktriangledown$ ). (B) ENZ535 carrying the *rpoS*1901 allele (Km<sup>r</sup>: ENZ2065) ( $\bigstar$ ,  $\blacktriangledown$ ). (C) ENZ535 carrying the *rpoS*819 allele (Km<sup>r</sup>: ENZ2063) ( $\bigstar$ ,  $\blacktriangledown$ ).



FIG. S6. Adaptive evolution of *E. coli* K-12 and of a *phnE*<sup>+</sup> derivative. Strains were diluted 1:50 into Pi-limiting medium every 9 days of incubation and incubated further for 30 days; the values for the subcultures #3 are shown. The values for 4 independent experiments are shown for each strain. (A) *E. coli* K-12 (ENZ2255). The numbers of colonies (total 20) exhibiting a PhnE<sup>+</sup> and/or an RpoS<sup>-</sup> phenotype are indicated below the figure. (B) *E. coli* K-12 *phnE*<sup>+</sup> (ENZ2256). The population that survived on day 30 of incubation ( $\bigcirc$ ) contained PhnE<sup>+</sup> cells (20/20).