

Suppl. Figure 1

SUPPL. FIGURE 2

SUPPL. FIGURE 3

SUPPL. FIGURE 4

SUPPL. FIGURE 5

SUPPLEMENTAL Fig. 1. **HiB5 neural progenitor cells express cannabinoid receptors.** Reverse transcription-PCR analysis of CB₁, CB₂ and GPR55 receptors was performed in HiB5 cells grown at proliferating (33° C) and differentiating conditions (3 days in vitro at 37° C) using the C6.9 clone of the glioma C6 cell line as control. Nestin and β -tubulin III transcripts were analyzed to monitor cell differentiation. Loading control was performed with GAPDH probe.

SUPPLEMENTAL Fig. 2. CB₂ cannabinoid receptors signal through the PI3K/Akt

/mTORC1 axis on neural progenitors and neurospheres. A, Immunofluorescence analysis of nestin-GFP neural progenitors with the anti-phospho-S6 antibody after HU-308 treatment for 30 min. B, Embryonic (E14.5) neural progenitor proliferation was determined by quantification of BrdU⁺ cells after 16 h of incubation with HU-308 as above, alone or in the presence of SR144528 and rapamycin. The fraction of BrdU⁺ cells is referred to the total cell number as determined by Hoechst 33342 counterstaining. Results correspond to 4 independent experiments. C, Neurosphere generation was determined in clonal-density progenitor cultures after 3 days of incubation with HU-308 in the absence or presence of rapamycin. Results correspond to 4 independent experiments. Scale bars, 10 μ m. *, p <0.05; **, p <0.01 versus vehicle-treated cells.

SUPPLEMENTAL Fig. 3. Lack of cell death in HiB5 progenitor cultures. A, HiB5 cells were treated with HU-308 (50 nM) for 16 h in the absence or presence of PD-8059 (10 μ M), LY-294,002 (5 μ M), Akt Inhibitor 1 (5 μ M) and rapamycin (50 nM) and cell death was quantified after immunofluorescence with a selective antibody against active caspase 3. Total cells were counterstained with Hoechst 33342. B, Representative immunofluorescence images are shown. Scale bar, 40 μ m.

SUPPLEMENTAL Fig 4. **ERK does not play a major role in HU-308-induced mTORC1 activation in HiB5 cells.** A and B, HiB5 cells were incubated with HU-308 (50 nM) for 30 min in the absence or presence of PD98059 (10 μ M) and LY-294,002 (5 μ M). Levels of phosphop70S6K were quantified and referred to loading control performed with anti- α -tubulin antibody. C and D, The number of phospho-S6⁺ HiB5 cells was quantified after incubation with HU-308 (50 nM) for 30 min in the absence or presence of PD98059 (10 μ M) and rapamycin (Rapa; 50 nM) and immunofluorescence. Phospho-S6⁺ cells were normalized to total cell number as identified by Hoechst 33342 counterstaining. Representative images are shown for each condition. Scale bar, 10 μ m. *, p <0.05; **, p <0.01 versus vehicle-treated cells; # p <0.05; ## p <0.01 versus HU-308-treated cells.

SUPPLEMENTAL Fig. 5. SGK1 participates in CB₂ receptor/mTORC1-mediated HiB5 cell progenitor proliferation. A, HiB5 cells were treated with HU-308 alone or in the presence of rapamycin (Rapa; 50 nM) and GSK-650394 (75 nM) and Western blot and immunofluoresce analyses were performed. Levels of phospho-SGK1 were quantified and referred to loading control performed with anti- α -tubulin antibody and given in arbitrary units (a.u.). Representative luminograms and immunofluorescence images are shown. B, HiB5 cells were treated as above for 16 h and BrdU incorporation was quantified. C, Neurosphere (NSP) generation was quantified in clonal-density conditions and the number of NSPs determined after 3 days of HU-308 treatment alone or in the presence of GSK-650394 and rapamycin (as above). Scale bars, B and D, 50 and 10 μ m, respectively. *, p <0.05, versus vehicle-treated cells; # p <0.05, versus HU-308-treated cells.